The effects of normobaric and hypobaric hypoxia on cognitive performance and physiological responses: A crossover study

Author:

Hohenauer ErichORCID,Freitag Livia,Costello Joseph T.,Williams Thomas B.ORCID,Küng Thomas,Taube Wolfgang,Herten Miriam,Clijsen RonORCID

Abstract

This partially randomised controlled, crossover study sought to investigate the effects of normobaric hypoxia (NH) and hypobaric hypoxia (HH) on cognitive performance, the physiological response at rest and after a 3-min step-test. Twenty healthy participants (10 females and 10 males, 27.6±6.2yrs, 73.6±13.7kg, 175.3±8.9cm) completed a cognitive performance test, followed by the modified Harvard-step protocol, in four environments: normobaric normoxia (NN; PiO2: 146.0±1.5mmHg), NH (PiO2: 100.9±1.3mmHg), HH at the first day of ascent (HH1: PiO2 = 105.6±0.4mmHg) and HH after an overnight stay (HH2: PiO2 = 106.0±0.5mmHg). At rest and/or exercise, SpO2, NIRS, and cardiovascular and perceptual data were collected. The cerebral tissue oxygenation index and the cognitive performance (throughput, accuracy, and reaction time) were not different between the hypoxic conditions (all p>0.05). In NH, SpO2 was higher compared to HH1 (ΔSpO2 NH vs HH1: 1.7±0.5%, p = 0.003) whilst heart rate (ΔHR NH vs HH2: 5.8±2.6 bpm, p = 0.03) and sympathetic activation (ΔSNSi NH vs HH2: 0.8±0.4, p = 0.03) were lower in NH compared to HH2. Heart rate (ΔHR HH1 vs HH2: 6.9±2.6 bpm, p = 0.01) and sympathetic action (ΔSNSi HH1 vs HH2: 0.9±0.4, p = 0.02) were both lower in HH1 compared to HH2. In conclusion, cognitive performance and cerebral oxygenation didn’t differ between the hypoxic conditions. SpO2 was only higher in NH compared to HH1. In HH2, heart rate and sympathetic activation were higher compared to both NH and HH1. These conclusions account for a PiO2 between 100–106 mmHg.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3