W-WaveNet: A multi-site water quality prediction model incorporating adaptive graph convolution and CNN-LSTM

Author:

Yang ShaojunORCID,Zhong Shangping,Chen KaizhiORCID

Abstract

Water quality prediction is of great significance in pollution control, prevention, and management. Deep learning models have been applied to water quality prediction in many recent studies. However, most existing deep learning models for water quality prediction are used for single-site data, only considering the time dependency of water quality data and ignoring the spatial correlation among multi-sites. This research defines and analyzes the non-aligned spatial correlations that exist in multi-site water quality data. Then deploy spatial-temporal graph convolution to process water quality data, which takes into account both the temporal and spatial correlation of multi-site water quality data. A multi-site water pollution prediction method called W-WaveNet is proposed that integrates adaptive graph convolution and Convolutional Neural Network, Long Short-Term Memory (CNN-LSTM). It integrates temporal and spatial models by interleaved stacking. Theoretical analysis shows that the method can deal with non-aligned spatial correlations in different time spans, which is suitable for water quality data processing. The model validates water quality data generated on two real river sections that have multiple sites. The experimental results were compared with the results of Support Vector Regression, CNN-LSTM, and Spatial-Temporal Graph Convolutional Networks (STGCN). It shows that when W-WaveNet predicts water quality over two river sections, the average Mean Absolute Error is 0.264, which is 45.2% lower than the commonly used CNN-LSTM model and 23.8% lower than the STGCN. The comparison experiments also demonstrate that W-WaveNet has a more stable performance in predicting longer sequences.

Publisher

Public Library of Science (PLoS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3