Mutations in SARS-CoV-2 are on the increase against the acquired immunity

Author:

Konishi TomokazuORCID

Abstract

Monovalent vaccines using mRNA or adenoviruses have provided substantial protection against the COVID-19 pandemic in many countries. However, viral mutations have hampered the efficacy of this approach. The Omicron variant, which appeared in Dec 2021, has caused a pandemic that has exerted pressure on the healthcare system worldwide. The COVID-19 vaccines are not very effective against this variant, resulting in an increased rate of infection and mortality. Owing to the rapidly increasing number of patients, few countries, such as Australia, New Zealand, and Taiwan, which aimed at zero-COVID cases, have discontinued their attempts to contain the spread of infection by imposing strict lockdowns, for example. Therefore, the administration of booster vaccinations has been initiated; however, there are concerns about their effectiveness, sustainability, and possible dangers. There is also the question of how a variant with such isolated mutations originated and whether this is likely to continue in the future. Here, we compare the mutations in the Omicron variant with others by direct PCA to consider questions pertaining to their evolution and characterisation. The Omicron variant, like the other variants, has mutated in humans. The accumulated mutations overwhelmed the acquired immunity and caused a pandemic. Similar mutations are likely to occur in the future. Additionally, the variants infecting animals were investigated; they rapidly mutated in animals and varied from the human strains. These animal-adapted strains are probably not highly infectious or pathogenic to humans. Hence, the possibility of using these strains as vaccines will be discussed.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference50 articles.

1. Beyond Omicron: what’s next for COVID’s viral evolution;E. Callaway;Nature. News,2021

2. Continuous mutation of SARS-CoV-2 during migration via three routes;T. Konishi;PeerJ,2021

3. SARS-CoV-2 in animals: potential for unknown reservoir hosts and public health implications;K Sharun;Veterinary Quarterly,2021

4. Animal Models for COVID-19: Hamsters, Mouse, Ferret, Mink, Tree Shrew, and Non-human Primates;S Shou;Frontiers in Microbiology,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3