β-tricalcium phosphate/gelatin composite scaffolds incorporated with gentamycin-loaded chitosan microspheres for infected bone defect treatment

Author:

Liu Yu,Zhao Qingqing,Chen Changsong,Wu Chunhu,Ma YuhaiORCID

Abstract

The repair of infected bone defects remains a clinical challenge. Staphylococcus aureus is a common pathogenic micro-organism associated with such infections. Gentamycin (GM) is a broad spectrum antibiotic that can kill S. aureus in a dose-dependent manner. However, the systemic administration of antibiotics may lead to drug resistance and gut dysbiosis. In this work, we constructed β-tricalcium phosphate/gelatin composite scaffolds incorporated with gentamycin-loaded chitosan microspheres (CMs(GM)-β-TCP/gelatin composite scaffolds), which helped optimize the local GM release in the infected defect areas and enhance bone regeneration. The cumulative release curves showed that both microspheres and composite scaffolds reached a sustained slow-release phase after the initial rapid release, and the latter further stabilized the initial drug release rate. The release curve of CMs(GM)-β-TCP/gelatin composite scaffolds reached a plateau after 24 h, and the cumulative release reached 41.86% during this period. Moreover, the combination of β-TCP and gelatin mimicked bone composition and were able to provide the requisite mechanical strength (0.82 ± 0.05 MPa) during the first phase of bone generation. The inner structure of the scaffold was arranged in the shape of interconnected pores, and presented a porosity level of 16%. The apertures were uniform in size, which was beneficial for cell proliferation and material transportation. Macroscopic observation and histological analysis showed that CMs(GM)-β-TCP/gelatin composite scaffolds fused with bone tissues, and new tissues were formed in defect areas without any infection. This new composite scaffold may be a promising repair material for treating infected bone defects.

Funder

Medical Health Science and Technology Project of Zhejiang Provincial Health Commission

Traditional Chinese Medicine Science and Technology Project of Zhejiang

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3