Comparative analysis of methods for identifying multimorbidity patterns among people with opioid use disorder: A retrospective single-cohort study

Author:

Rodrigues MyancaORCID,Rosic TeaORCID,Babe Glenda,Dennis Brittany B.,McEvoy Alannah,Perez Richard,de Oliveira ClaireORCID,Parpia Sameer,Samaan Zainab,Thabane LehanaORCID

Abstract

Background Multimorbidity, the presence of two or more (2+) chronic conditions, presents significant challenges for healthcare delivery, particularly among populations with opioid use disorder (OUD). Multimorbidity patterns among individuals with OUD are not well established, and minimal research exists examining the impact of clustering methods on identifying these patterns. Objective Our study aimed to assess multimorbidity prevalence, explore associated sociodemographic and clinical characteristics, and determine multimorbidity patterns using hierarchical cluster analysis (HCA) and K-means clustering among people receiving treatment for OUD in Ontario, Canada between 2011 and 2021. Methods Data from two prospective cohort studies were merged and linked to Ontario provincial health administrative databases. We identified 16 chronic conditions, used in prior research examining multimorbidity in Ontario, using ICD-10-CA diagnostic codes and the diagnostic codes of physician billing claims using a 2-year lookback. Multimorbidity was defined as the presence of 2+ of the above conditions, excluding the diagnosis of OUD. We conducted a retrospective cohort study, following the participants for eight years in the data holdings to ascertain the prevalence of multimorbidity. Sociodemographic and clinical characteristics were analyzed using modified Poisson regression models, and multimorbidity patterns were identified through HCA and K-means clustering. Results Among 3,430 people with OUD, 32.5% (n = 1,114, 95% confidence interval (CI)=30.9, 34.1) experienced multimorbidity over an eight-year period, with older age (Prevalence Ratio (PR)=3.39, 95% CI = 2.36, 4.87) and unemployment (PR = 1.31, 95% CI = 1.13, 1.54) associated with increased prevalence. HCA identified six distinct disease clusters, whereas K-means clustering identified four clusters. Both methods identified groupings of cardiovascular (coronary syndrome), cardiometabolic (diabetes, hypertension), and respiratory (chronic obstructive pulmonary disease) diseases, reflecting shared comorbidities among people with OUD. Discussion Our findings highlight the substantial burden of multimorbidity among populations with OUD, and the importance of considering sociodemographic factors in understanding multimorbidity prevalence. Moreover, the choice of clustering method significantly influences the identification and interpretation of multimorbidity patterns, with HCA providing more clinically meaningful groupings compared to K-means clustering. Our findings highlight the need for clinicians to tailor care plans and for policymakers to prioritize integrated healthcare delivery strategies to address the complex health needs of people with OUD.

Funder

McMaster University

Canadian Institutes of Health Research

Research Institute of St. Joseph’s Studentship Award

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3