Nanopore-based targeted next-generation sequencing (tNGS): A versatile technology specialized in detecting low bacterial load clinical specimens

Author:

Yang Chen,Gao Weiwei,Guo Yicheng,Zeng YiORCID

Abstract

Introduction The 2024 global tuberculosis report indicated that the epidemiological situation of tuberculosis remains concerning. Current tuberculosis detection methods have limitations, highlighting the urgent need to develop more convenient, effective, and widely utilized detection technologies in clinical settings to facilitate early diagnosis and treatment guidance for tuberculosis. Nanopore-based targeted next-generation sequencing (tNGS) offers advantages such as convenience, efficiency, and long-read sequencing, making it a commonly used method for mycobacteria identification. Methods This study compared the detection efficiency of tNGS with Xpert MTB/RIF, MTB culture, and AFB smear in sputum samples, BALF samples, and pathological tissue samples to evaluate the clinical applicability of tNGS in diagnosing tuberculosis and low bacterial load tuberculosis, including extrapulmonary and smear-negative cases. Results Among the four detection methods, tNGS demonstrated the highest efficiency, sensitivity, specificity, and AUC values, which are 93.4%, 94.7%, and 0.94, respectively. This method was particularly advantageous for detecting tuberculosis in patients with low bacterial loads, as evidenced by a significantly different positive detection rate in histopathological specimens compared to other methods (P < 0.001). Furthermore, tNGS achieved overall positive detection rates of 93.8% for smear-negative tuberculosis patients and 89.1% for culture-negative tuberculosis patients, both of which were significantly higher than those of other detection methods (P < 0.05). Additionally, tNGS could directly identify bacterial strains and detect mutations associated with drug resistance. In this study, the agreement rate between tNGS strain identification of NTM and the final diagnosis was 94.1%. Among the 21 identified mutation sites associated with rifampicin resistance, one (Pro454His) was located outside RRDR. Conclusion It is anticipated that tNGS will play a crucial clinical role in the early prevention and control of tuberculosis in the future.

Funder

Special Fund for Scientific Innovation Strategy-Construction of High-level Academy of Agriculture Science

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3