Abstract
Background
The use of Artificial Intelligence (AI) is exponentially rising in the healthcare sector. This change influences various domains of early identification, diagnosis, and treatment of diseases.
Purpose
This study examines the integration of AI in healthcare, focusing on its transformative potential in diagnostics and treatment, and the challenges and methodologies. shaping its future development.
Methods
The review included 68 academic studies retracted from different databases (WOS, Scopus and Pubmed) from January 2020 and April 2024. After careful review and data analysis, AI methodologies, benefits and challenges, were summarized.
Results
The number of studies showed a steady rise from 2020 to 2023. Most of them were the results of a collaborative work with international universities (92.1%). The majority (66.7%) were published in top-tier (Q1) journals and 40% were cited 2–10 times. The results have shown that AI tools such as deep learning methods and machine learning continue to significantly improve accuracy and timely execution of medical processes. Benefits were discussed from both the organizational and the patient perspective in the categories of diagnosis, treatment, consultation and health monitoring of diseases. However, some challenges may exist, despite these benefits, and are related to data integration, errors related to data processing and decision making, and patient safety.
Conclusion
The article examines the present status of AI in medical applications and explores its potential future applications. The findings of this review are useful for healthcare professionals to acquire deeper knowledge on the use of medical AI from design to implementation stage. However, a thorough assessment is essential to gather more insights into whether AI benefits outweigh its risks. Additionally, ethical and privacy issues need careful consideration.
Publisher
Public Library of Science (PLoS)