Ferroptosis-related gene MAPK3 is associated with the neurological outcome after cardiac arrest

Author:

Hou Hong xiang,Pang Li,Zhao Liang,Xing JihongORCID

Abstract

Background Neuronal ferroptosis is closely related to the disease of the nervous system, and the objective of the present study was to recognize and verify the potential ferroptosis-related genes to forecast the neurological outcome after cardiac arrest. Methods Cardiac Arrest-related microarray datasets GSE29540 and GSE92696 were downloaded from GEO and batch normalization of the expression data was performed using “sva” of the R package. GSE29540 was analyzed to identify DEGs. Venn diagram was applied to recognize ferroptosis-related DEGs from the DEGs. Subsequently, The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed, and PPI network was applied to screen hub genes. Receiver operating characteristic (ROC) curves were adopted to determine the predictive value of the biomarkers, and the GSE92696 dataset was applied to further evaluate the diagnostic efficacy of the biomarkers. We explore transcription factors and miRNAs associated with hub genes. The “CIBERSORT” package of R was utilized to analyse the proportion infiltrating immune cells. Finally, validated by a series of experiments at the cellular level. Results 112 overlapping ferroptosis-related DEGs were further obtained via intersecting these DEGs and ferroptosis-related genes. The GO and KEGG analysis demonstrate that ferroptosis-related DEGs are mainly involved in response to oxidative stress, ferroptosis, apoptosis, IL-17 signalling pathway, autophagy, toll-like receptor signalling pathway. The top 10 hub genes were selected, including HIF1A, MAPK3, PPARA, IL1B, PTGS2, RELA, TLR4, KEAP1, SREBF1, SIRT6. Only MAPK3 was upregulated in both GSE29540 and GAE92696. The AUC values of the MAPK3 are 0.654 and 0.850 in GSE29540 and GSE92696 respectively. The result of miRNAs associated with hub genes indicates that hsa-miR-214-3p and hsa-miR-483-5p can regulate the expression of MAPK3. MAPK3 was positively correlated with naive B cells, macrophages M0, activated dendritic cells and negatively correlated with activated CD4 memory T cells, CD8 T cells, and memory B cells. Compared to the OGD4/R24 group, the OGD4/R12 group had higher MAPK3 expression at both mRNA and protein levels and more severe ferroptosis. Conclusion In summary, the MAPK3 ferroptosis-related gene could be used as a biomarker to predict the neurological outcome after cardiac arrest. Potential biological pathways provide novel insights into the pathogenesis of cardiac arrest.

Funder

National Natural Science Foundation of China

Publisher

Public Library of Science (PLoS)

Reference70 articles.

1. Global incidences of out-of-hospital cardiac arrest and survival rates: Systematic review of 67 prospective studies;J. Berdowski;Resuscitation,2010

2. Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association;C. W. Tsao;Circulation,2022

3. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association;E. J. Benjamin;Circulation,2019

4. European Resuscitation Council Guidelines 2021: Epidemiology of cardiac arrest in Europe;J. T. Gräsner;Resuscitation,2021

5. Annual Incidence of Adult and Pediatric In-Hospital Cardiac Arrest in the United States;M. J. Holmberg;Circ Cardiovasc Qual Outcomes,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3