Crop calendar optimization for climate change adaptation in yam farming in South-Kivu, eastern D.R. Congo

Author:

Mondo Jean M.,Chuma Géant B.ORCID,Matiti Henri M.,Kihye Jacques B.ORCID,Bagula Espoir M.,Karume Katcho,Kahindo Charles,Egeru Anthony,Majaliwa Jackson-Gilbert M.,Agre Paterne A.,Adebola Patrick A.,Asfaw Asrat

Abstract

The traditional crop calendar for yam (Dioscorea spp.) in South-Kivu, eastern Democratic Republic of Congo (DRC), is becoming increasingly inadequate given the significant climatic variability observed over the last three decades. This study aimed at: (i) assessing trends in weather data across time and space to ascertain climate change, and (ii) optimizing the yam crop calendar for various South-Kivu agro-ecological zones (AEZs) to adapt to the changing climate. The 1990–2022 weather data series were downloaded from the NASA-MERRA platform, bias correction was carried out using local weather stations’ records, and analyses were performed using RClimDex 1.9. Local knowledge and CROPWAT 8.0 were used to define planting dates for yam in different AEZs. Results showed the existence of four AEZs in the South-Kivu province, with contrasting altitudes, temperatures, and rainfall patterns. Climate change is real in all these South-Kivu’s AEZs, resulting either in rainfall deficits in some areas, or extreme rainfall events in others, with significant temperature increases across all AEZs. Suitable yam planting dates varied with AEZs, September 15th and 20th were recommended for the AEZ 2 while October 15th was optimal for AEZ 1, AEZ 3, and AEZ 4. However, none of the planting date scenarios could meet the yam water requirements in AEZ1, AEZ3, and AEZ4, since the effective rainfall (Pmm) was always inferior to the plant water demand (ETc), meaning that soil water conservation practices are needed for optimum plant growth and yield in these AEZs. This study does not recommend planting yam during the short rainy season owing to prolonged droughts coinciding with critical growth phases of yam, unless supplemental irrigation is envisaged. This study provided insights on the nature of climate change across the past three decades and suggested a yam crop calendar that suits the changing climate of eastern DRC.

Funder

Bill and Melinda Gates Foundation

Centre for Research in Biotechnology for Agriculture, University of Malaya

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3