Solution structure and pressure response of thioredoxin-1 of Plasmodium falciparum

Author:

Munte Claudia Elisabeth,Kalbitzer Hans Robert

Abstract

We present here the solution structures of the protein thioredoxin-1 from Plasmodium falciparum (PfTrx-1), in its reduced and oxidized forms. They were determined by high-resolution NMR spectroscopy at 293 K on uniformly 13C-, 15N-enriched, matched samples allowing to identification of even small structural differences. PfTrx-1 shows an α/β-fold with a mixed five-stranded β-sheet that is sandwiched between 4 helices in a β1 α1 β2 α2 β3 α3 β4 β5 α4 topology. The redox process of the CGPC motif leads to significant structural changes accompanied by larger chemical shift changes from residue Phe25 to Ile36, Thr70 to Thr74, and Leu88 to Asn91. By high-field high-pressure NMR spectroscopy, rare conformational states can be identified that potentially are functionally important and can be used for targeted drug development. We performed these experiments in the pressure range from 0.1 MPa to 200 MPa. The mean combined, random-coil corrected B1* values of reduced and oxidized thioredoxin are quite similar with -0.145 and -0.114 ppm GPa-1, respectively. The mean combined, random-coil corrected B2* values in the reduced and oxidized form are 0.179 and 0.119 ppm GPa-2, respectively. The mean ratios of the pressure coefficients B2/B1 are -0.484 and -0.831 GPa-1 in the reduced and oxidized form respectively. They differ at some points in the structure after the formation of the disulfide bond between C30 and C33. The thermodynamical description of the pressure dependence of chemical shifts requires the assumption of at least three coexisting conformational states of PfTrx-1. These three conformational states were identified in the reduced as well as in the oxidized form of the protein, therefore, they represent sub-states of the two main oxidation states of PfTrx-1.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3