Code-mixing unveiled: Enhancing the hate speech detection in Arabic dialect tweets using machine learning models

Author:

Alhazmi AliORCID,Mahmud Rohana,Idris Norisma,Mohamed Abo Mohamed Elhag,Eke Christopher Ifeanyi

Abstract

Technological developments over the past few decades have changed the way people communicate, with platforms like social media and blogs becoming vital channels for international conversation. Even though hate speech is vigorously suppressed on social media, it is still a concern that needs to be constantly recognized and observed. The Arabic language poses particular difficulties in the detection of hate speech, despite the considerable efforts made in this area for English-language social media content. Arabic calls for particular consideration when it comes to hate speech detection because of its many dialects and linguistic nuances. Another degree of complication is added by the widespread practice of "code-mixing," in which users merge various languages smoothly. Recognizing this research vacuum, the study aims to close it by examining how well machine learning models containing variation features can detect hate speech, especially when it comes to Arabic tweets featuring code-mixing. Therefore, the objective of this study is to assess and compare the effectiveness of different features and machine learning models for hate speech detection on Arabic hate speech and code-mixing hate speech datasets. To achieve the objectives, the methodology used includes data collection, data pre-processing, feature extraction, the construction of classification models, and the evaluation of the constructed classification models. The findings from the analysis revealed that the TF-IDF feature, when employed with the SGD model, attained the highest accuracy, reaching 98.21%. Subsequently, these results were contrasted with outcomes from three existing studies, and the proposed method outperformed them, underscoring the significance of the proposed method. Consequently, our study carries practical implications and serves as a foundational exploration in the realm of automated hate speech detection in text.

Publisher

Public Library of Science (PLoS)

Reference65 articles.

1. A survey on hate speech detection using natural language processing;A Schmidt;Proceedings of the fifth international workshop on natural language processing for social media,2017

2. Analyzing the targets of hate in online social media;L Silva;Proceedings of the International AAAI Conference on Web and Social Media,2016

3. A survey on automatic detection of hate speech in text;P Fortuna;ACM Computing Surveys (CSUR),2018

4. Social media and outbreaks of emerging infectious diseases: A systematic review of literature;L Tang;American journal of infection control,2018

5. Hateful conduct 2024 [cited 2024 Feb 20]. Available from: https://help.twitter.com/en/rules-and-policies/hateful-conduct-policy.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3