A deep neural network prediction method for diabetes based on Kendall’s correlation coefficient and attention mechanism

Author:

Qi XiaoboORCID,Lu YachenORCID,Shi Ying,Qi Hui,Ren Lifang

Abstract

Diabetes is a chronic disease, which is characterized by abnormally high blood sugar levels. It may affect various organs and tissues, and even lead to life-threatening complications. Accurate prediction of diabetes can significantly reduce its incidence. However, the current prediction methods struggle to accurately capture the essential characteristics of nonlinear data, and the black-box nature of these methods hampers its clinical application. To address these challenges, we propose KCCAM_DNN, a diabetes prediction method that integrates Kendall’s correlation coefficient and an attention mechanism within a deep neural network. In the KCCAM_DNN, Kendall’s correlation coefficient is initially employed for feature selection, which effectively filters out key features influencing diabetes prediction. For missing values in the data, polynomial regression is utilized for imputation, ensuring data completeness. Subsequently, we construct a deep neural network (KCCAM_DNN) based on the self-attention mechanism, which assigns greater weight to crucial features affecting diabetes and enhances the model’s predictive performance. Finally, we employ the SHAP model to analyze the impact of each feature on diabetes prediction, augmenting the model’s interpretability. Experimental results show that KCCAM_DNN exhibits superior performance on both PIMA Indian and LMCH diabetes datasets, achieving test accuracies of 99.090% and 99.333%, respectively, approximately 2% higher than the best existing method. These results suggest that KCCAM_DNN is proficient in diabetes prediction, providing a foundation for informed decision-making in the diagnosis and prevention of diabetes.

Funder

Shanxi PatentTransformation Special Programs

BasicResearch Program (Free Exploration) of Shanxi Province

Taiyuan Normal University Achievement Transformation and TechnologyTransfer Base

The Humanities and Social Sciences Research Foundation of the Ministry of Education

Foundation Research Programme of Shanxi Province

Publisher

Public Library of Science (PLoS)

Reference32 articles.

1. Retinopathy and Risk of Kidney Disease in Persons With Diabetes[J];J Hong;Kidney Medicine

2. Type 1 diabetes in 2017: global estimates of incident and prevalent cases in children and adults;A. Green;Diabetologia,2021

3. Dataset and Feature Analysis for Diabetes Mellitus Classification using Random Forest[J];F Mustofa;Journal of Computing Theories and Applications,2023

4. Predicting Diabetes in Women by Applying the Support Vector Machine (SVM) Model

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3