MDL: Industrial carbon emission prediction method based on meta-learning and diff long short-term memory networks

Author:

Li Feng,Sun Meng,Xian Qinglong,Feng XuefengORCID

Abstract

Greenhouse gas emissions, as one of the primary contributors to global warming, present an urgent environmental challenge that requires attention. Accurate prediction of carbon dioxide (CO2) emissions from the industrial sector is crucial for the development of low-carbon industries. However, existing time series models often suffer from severe overfitting when data volume is insufficient. In this paper, we propose a carbon emission prediction method based on meta-learning and differential long- and short-term memory (MDL) to address this issue. Specifically, MDL leverages Long Short-Term Memory (LSTM) to capture long-term dependencies in time series data and employs a meta-learning framework to transfer knowledge from multiple source task datasets for initializing the carbon emission prediction model for the target task. Additionally, the combination of differential LSTM and the meta-learning framework reduces the dependency of the differential long- and short-term memory network on data volume. The smoothed difference method, included in this approach, mitigates the randomness of carbon emission sequences, consequently benefiting the fit of the LSTM model to the data. To evaluate the effectiveness of our proposed method, we validate it using carbon emission datasets from 30 provinces in China and the industrial sector in Xinjiang. The results show that the average absolute error (MAE), Coefficient of Determination (R2) and root mean square error (RMSE) of the method have been reduced by 61.8% and 63.8% on average compared with the current mainstream algorithms. The method provides an efficient and accurate solution to the task of industrial carbon emission prediction, and helps environmental policy makers to formulate environmental policies and energy consumption plans.

Funder

Xinjiang Uygur Autonomous Region Key R&D Project

Publisher

Public Library of Science (PLoS)

Reference44 articles.

1. Economic growth, CO2 emissions and energy consumption: what causes what and where?;A O Acheampong;Energy Economics,2018

2. Does higher economic and financial development lead to environmental degradation: evidence from BRIC countries;A Tamazian;Energy policy,2009

3. China statistical yearbook;National Bureau of Statistics;Beijing: China Statistics Press,2016

4. The evolution of Chinese industrial CO2 emissions 2000–2050: a review and meta-analysis of historical drivers, projections and policy goals;J Wang;Renewable and Sustainable Energy Reviews,2019

5. A study on the dynamics of coupled and coordinated relationship between population development and industrialization in four southern Xinjiang prefectures;Y Hao;Shaanxi Normal University,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3