Combined use of Panax notoginseng and leech provides new insights into renal fibrosis: Restoration of mitochondrial kinetic imbalance

Author:

Chen XinORCID,Deng Jingwei,Zuo Ling,Luo Hongyu,Wang Munan,Deng Peng,Yang Kang,Yang Qian,Huang XuekuanORCID

Abstract

In this study, we aimed to investigate the protective effects of Panax notoginseng and leech (PL) on renal fibrosis and explore the mechanisms underlying their actions. For this study, we created an adenine-induced renal fibrosis model in SD rats to investigate the protective effect of PL on renal fibrosis and explore its underlying mechanism. Initially, we assessed the renal function in RF rats and found that Scr, BUN, and urine protein content decreased after PL treatment, indicating the protective effect of PL on renal function. Histological analysis using HE and Masson staining revealed that PL reduced inflammatory cell infiltration and decreased collagen fiber deposition in renal tissue. Subsequently, we analyzed the levels of α-SMA, Col-IV, and FN, which are the main components of the extracellular matrix (ECM), using IHC, RT-qPCR, and WB. The results demonstrated that PL was effective in reducing the accumulation of ECM, with PL1-2 showing the highest effectiveness. To further understand the underlying mechanisms, we conducted UPLC-MS/MS analysis on the incoming components of the PL1-2 group. The results revealed several associations between the differential components and antioxidant and mitochondrial functions. This was further confirmed by enzyme-linked immunosorbent assay and biochemical indexes, which showed that PL1-2 ameliorated oxidative stress by reducing ROS and MDA production and increasing GSH and SOD levels. Additionally, transmission electron microscopy results indicated that PL1-2 promoted partial recovery of mitochondrial morphology and cristae. Finally, using RT-qPCR and WB, an increase in the expression of mitochondrial fusion proteins Mfn1, Mfn2, and Opa1 after PL1-2 treatment was observed, coupled with a decline in the expression and phosphorylation of mitochondrial cleavage proteins Fis and Drp1. These findings collectively demonstrate that PL1-2 ameliorates renal fibrosis by reducing oxidative stress and restoring mitochondrial balance.

Funder

Chongqing Municipal Education Commission

Chongqing Municipal Science and Technology Bureau

Chongqing Municipal Health Commission

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3