Optimized ensemble deep learning for predictive analysis of student achievement

Author:

Wang KaitongORCID

Abstract

Education is essential for individuals to lead fulfilling lives and attain greatness by enhancing their value. It improves self-assurance and enables individuals to navigate the complexities of modern society effectively. Despite the obstacles it faces, education continues to develop. The objective of numerous pedagogical approaches is to enhance academic performance. The development of technology, especially artificial intelligence, has caused a significant change in learning. This has made instructional materials available anytime and wherever easily accessible. Higher education institutions are adding technology to conventional teaching strategies to improve learning. This work presents an innovative approach to student performance prediction in educational settings. The strategy combines the DistilBERT with LSTM (DBTM) hybrid approach with the Spotted Hyena Optimizer (SHO) to change parameters. Regarding accuracy, log loss, and execution time, the model significantly improved over earlier models. The challenges presented by the increasing volume of data in graduate and postgraduate programs are effectively addressed by the proposed method. It produces exceptional performance metrics, including a 15-25% decrease in processing time through optimization, 98.7% accuracy, and 0.03% log loss. This work additionally demonstrates the effectiveness of DBTM-SHO in administering extensive datasets and makes an important improvement to educational data mining. It provides a robust foundation for organizations facing the challenges of evaluating student achievement in the era of vast data.

Publisher

Public Library of Science (PLoS)

Reference28 articles.

1. Educational data mining versus learning analytics: A review of publications from 2015 to 2019;C Baek;Interactive Learning Environments,2023

2. Challenges of improving the quality of academic supervision of postgraduate studies at the Faculty of Education, Damietta University;AS Gohar;Journal of Educational Issues,2021

3. Learning time acceleration in support vector regression: A case study in educational data mining;JS Pimentel;Stats,2021

4. A comparative study on student performance prediction using machine learning;Y Chen;Education and Information Technologies,2023

5. Linking task-technology fit, innovativeness, and teacher readiness using structural equation modelling;HA Almusawi;Education and Information Technologies,2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3