Impact of methane mitigation strategies on the native ruminant microbiome: A protocol for a systematic review and meta-analysis

Author:

Frazier A. NathanORCID,Belk Aeriel D.,Beck Matthew R.ORCID,Koziel Jacek A.ORCID

Abstract

Recently, research has investigated the role of the ruminant native microbiome, and the role microbes play in methane (CH4) production and mitigation. However, the variation across microbiome studies makes implementing impactful strategies difficult. The first objective of this study is to identify, summarize, compile, and discuss the current literature on CH4 mitigation strategies and how they interact with the native ruminant microbiome. The second objective is to perform a meta-analysis on the identified16S rRNA sequencing data. A literature search using Web of Science, Scopus, AGRIS, and Google Scholar will be implemented. Eligible criteria will be defined using PICO (population, intervention, comparator, and outcomes) elements. Two independent reviewers will be utilized for both the literature search and data compilation. Risk of bias will be assessed using the Cochrane Risk Bias 2.0 tool. Publicly available 16S rRNA amplicon gene sequencing data will be downloaded from NCBI Sequence Read Archive, European Nucleotide Archive or similar database using appropriate extraction methods. Data processing will be performed using QIIME2 following a standardized protocol. Meta-analyses will be performed on both alpha and beta diversity as well as taxonomic analyses. Alpha diversity metrics will be tested using a Kruskal-Wallis test with a Benjamini-Hochberg multiple testing correction. Beta diversity will be statistically tested using PERMANOVA testing with multiple test corrections. Hedge’s g standardized mean difference statistic will be used to calculate fixed and random effects model estimates using a 95% confidence interval. Heterogeneity between studies will be assessed using the I2 statistic. Potential publication bias will be further assessed using Begg’s correlation test and Egger’s regression test. The GRADE approach will be used to assess the certainty of evidence. The following protocol will be used to guide future research and meta-analyses for investigating CH4 mitigation strategies and ruminant microbial ecology. The future work could be used to enhance livestock management techniques for GHG control. This protocol is registered in Open Science Framework (https://osf.io/vt56c) and available in the Systematic Reviews for Animals and Food (https://www.syreaf.org/contact).

Publisher

Public Library of Science (PLoS)

Reference64 articles.

1. FAO. 2023. Pathways towards lower emissions—A global assessment of the greenhouse gas emissions and mitigation options from livestock agrifood systems. Rome. https://doi.org/10.4060/cc9029en

2. Acting rapidly to deploy readily available methane mitigation measures by sector can immediately slow global warming;I.B. Ocko;Environ. Res. Lett,2021

3. Implied climate warming contributions of enteric methane emissions are dependent on the estimate source and accounting methodology;M.R. Beck;Appl. Anim. Sci,2022

4. U.S. manure methane emissions represent a greater contributor to implied climate warming than enteric methane emissions using the global warming potential methodology;M.R. Beck;Front. Sust. Food Sys,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3