Compositionally aware estimation of cross-correlations for microbiome data

Author:

Jensen Ib ThorsgaardORCID,Janss Luc,Radutoiu Simona,Waagepetersen Rasmus

Abstract

In the field of microbiome studies, it is of interest to infer correlations between abundances of different microbes (here referred to as operational taxonomic units, OTUs). Several methods taking the compositional nature of the sequencing data into account exist. However, these methods cannot infer correlations between OTU abundances and other variables. In this paper we introduce the novel methods SparCEV (Sparse Correlations with External Variables) and SparXCC (Sparse Cross-Correlations between Compositional data) for quantifying correlations between OTU abundances and either continuous phenotypic variables or components of other compositional datasets, such as transcriptomic data. SparCEV and SparXCC both assume that the average correlation in the dataset is zero. Iterative versions of SparCEV and SparXCC are proposed to alleviate bias resulting from deviations from this assumption. We compare these new methods to empirical Pearson cross-correlations after applying naive transformations of the data (log and log-TSS). Additionally, we test the centered log ratio transformation (CLR) and the variance stabilising transformation (VST). We find that CLR and VST outperform naive transformations, except when the correlation matrix is dense. SparCEV and SparXCC outperform CLR and VST when the number of OTUs is small and perform similarly to CLR and VST for large numbers of OTUs. Adding the iterative procedure increases accuracy for SparCEV and SparXCC for all cases, except when the average correlation in the dataset is close to zero or the correlation matrix is dense. These results are consistent with our theoretical considerations.

Funder

Bill and Melinda Gates Foundation

Villum Fonden

Publisher

Public Library of Science (PLoS)

Reference51 articles.

1. Next-Generation Sequencing Technologies;WR McCombie;Cold Spring Harbor Perspectives in Medicine,2019

2. A pathology atlas of the human cancer transcriptome;M Uhlen;Science,2017

3. Transcriptome Profiling in Human Diseases: New Advances and Perspectives;A Casamassimi;International Journal of Molecular Sciences,2017

4. Integrated analysis of human transcriptome data for Rett syndrome finds a network of involved genes;F Ehrhart;The World Journal of Biological Psychiatry,2020

5. Human gut microbiome: hopes, threats and promises;PD Cani;Gut,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3