Reliably calibrating X-ray images required for preoperative planning of THA using a device-adapted magnification factor

Author:

Brüggemann HeinrichORCID,Paulsen AkselORCID,Oppedal Ketil,Grasmair MarkusORCID,Hömberg DietmarORCID

Abstract

Background and aim Calibrated pelvic X-ray images are needed in the preoperative planning of total hip arthroplasty (THA) to predict component sizes. Errors and mismatch in the size of one or more components are reported, which can lead to clinically relevant complications. Our aim is to investigate whether we can solve the fundamental problem of X-ray calibration and whether traditional X-ray still has a place in preoperative planning despite improved radiological alternatives. Methods Based on geometric and radiographic principles, we estimate that the magnification factor is adapted to the X-ray device and depends strongly on the source-image distance of the device. We analyse the errors of the various calibration methods and investigate which narrow range can be expected to show that the center of rotation is sufficiently accurate. Based on the results of several CT-scans we defined an adapted magnification factor and validated the degree of measurement accuracy. Results The true magnification of objects on X-ray images depends mainly on the device settings. Stem size prediction is possible to a limited extent, with an error margin of 4.3%. Components can be predicted with a safety margin of one size up and down as with CT or 3D images. The prerequisite is that the source-image distance is greater than or equal to 120 cm, the table-image distance is known, and the object-image distance is estimated according to the patient’s BMI. We defined a device-adapted magnification factor that simplifies the templating routine and can be used to obtain the most reliable preoperative dimensional measurements that can be expected from X-ray images. We found the error margin of the magnification factor with the highest degrees of prediction and precision. Conclusion Preoperative planning is reliable and reproducible using X-ray images if calibration is performed with the device-adapted magnification factor suggested in this paper.

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3