Brain age monotonicity and functional connectivity differences of healthy subjects

Author:

Sorooshyari Siamak K.ORCID

Abstract

Alterations in the brain’s connectivity or the interactions among brain regions have been studied with the aid of resting state (rs)fMRI data attained from large numbers of healthy subjects of various demographics. This has been instrumental in providing insight into how a phenotype as fundamental as age affects the brain. Although machine learning (ML) techniques have already been deployed in such studies, novel questions are investigated in this work. We study whether young brains develop properties that progressively resemble those of aged brains, and if the aging dynamics of older brains provide information about the aging trajectory in young subjects. The degree of a prospective monotonic relationship will be quantified, and hypotheses of brain aging trajectories will be tested via ML. Furthermore, the degree of functional connectivity across the age spectrum of three datasets will be compared at a population level and across sexes. The findings scrutinize similarities and differences among the male and female subjects at greater detail than previously performed.

Publisher

Public Library of Science (PLoS)

Reference45 articles.

1. Abnormal intrinsic brain functional network dynamics in Parkinson’s disease;J. Kim;Brain,2017

2. The Brain Chart of Aging: Machine-learning analytics reveals links between brain aging, white matter disease, amyloid burden, and cognition in the iSTAGING consortium of 10,216 harmonized MR scans;M. Habes;Alzheimer’s & Dementia,2021

3. Hallmarks of brain aging: adaptive and pathological modification by metabolic states;M. Mattson;Cell Metabolism,2018

4. Abnormal intrinsic brain functional network dynamics in Parkinson’s disease;J. Cole;Molecular Psychiatry,2018

5. Prediction of individual brain maturity using fMRI;N. Dosenbach;Science,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3