Multiple serial correlations in global air temperature anomaly time series

Author:

Gao MengORCID,Fang Xiaoyu,Ge RuijunORCID,Fan You-ping,Wang Yueqi

Abstract

Serial correlations within temperature time series serve as indicators of the temporal consistency of climate events. This study delves into the serial correlations embedded in global surface air temperature (SAT) data. Initially, we preprocess the SAT time series to eradicate seasonal patterns and linear trends, resulting in the SAT anomaly time series, which encapsulates the inherent variability of Earth’s climate system. Employing diverse statistical techniques, we identify three distinct types of serial correlations: short-term, long-term, and nonlinear. To identify short-term correlations, we utilize the first-order autoregressive model, AR(1), revealing a global pattern that can be partially attributed to atmospheric Rossby waves in extratropical regions and the Eastern Pacific warm pool. For long-term correlations, we adopt the standard detrended fluctuation analysis, finding that the global pattern aligns with long-term climate variability, such as the El Niño-Southern Oscillation (ENSO) over the Eastern Pacific. Furthermore, we apply the horizontal visibility graph (HVG) algorithm to transform the SAT anomaly time series into complex networks. The topological parameters of these networks aptly capture the long-term correlations present in the data. Additionally, we introduce a novel topological parameter, Δσ, to detect nonlinear correlations. The statistical significance of this parameter is rigorously tested using the Monte Carlo method, simulating fractional Brownian motion and fractional Gaussian noise processes with a predefined DFA exponent to estimate confidence intervals. In conclusion, serial correlations are universal in global SAT time series and the presence of these serial correlations should be considered carefully in climate sciences.

Funder

Natural Science Foundation of Shandong Province

National Natural Science Foundation of China

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3