Abstract
This study develops a "Skill Talent Ecological Evaluation Model" across cultivation, potential energy, kinetic energy, innovation, and service and support ecologies. AHP-entropy determines indicator weights, Hopfield neural network assesses talent ecology levels, and the PVAR model analyzes digital transformation effects. Findings reveal: Cultivation ecology rates A, potential ecology rates B+, kinetic ecology rates B-, service and support ecology rates B-, and innovation ecology rates C. Digital transformation spurs skill demand, impacting talent and economic contributions. Kinetic ecology sees increased demand, potentially impacting traditional industries positively. Innovation ecology necessitates continuous skill learning. Service and support ecology witnesses growth in digital entrepreneurship, requiring policy incentives and incubation center support.
Funder
National Natural Science Foundation of China
Publisher
Public Library of Science (PLoS)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献