Construction and alidation of a severity prediction model for acute pancreatitis based on CT severity index: A retrospective case-control study

Author:

Han Xiao,Hu Mao-nengORCID,Ji Peng,Liu Yun-feng

Abstract

To construct and internally and externally validate a nomogram model for predicting the severity of acute pancreatitis (AP) based on the CT severity index (CTSI).A retrospective analysis of clinical data from 200 AP patients diagnosed at the Hefei Third Clinical College of Anhui Medical University from June 2019 to June 2022 was conducted. Patients were classified into non-severe acute pancreatitis (NSAP, n = 135) and severe acute pancreatitis (SAP, n = 65) based on final clinical diagnosis. Differences in CTSI, general clinical features, and laboratory indicators between the two groups were compared. The LASSO regression model was used to select variables that might affect the severity of AP, and these variables were analyzed using multivariate logistic regression. A nomogram model was constructed using R software, and its AUC value was calculated. The accuracy and practicality of the model were evaluated using calibration curves, Hosmer-Lemeshow test, and decision curve analysis (DCA), with internal validation performed using the bootstrap method. Finally, 60 AP patients treated in the same hospital from July 2022 to December 2023 were selected for external validation.LASSO regression identified CTSI, BUN, D-D, NLR, and Ascites as five predictive factors. Unconditional binary logistic regression analysis showed that CTSI (OR = 2.141, 95%CI:1.369–3.504), BUN (OR = 1.378, 95%CI:1.026–1.959), NLR (OR = 1.370, 95%CI:1.016–1.906), D-D (OR = 1.500, 95%CI:1.112–2.110), and Ascites (OR = 5.517, 95%CI:1.217–2.993) were independent factors influencing SAP. The established prediction model had a C-index of 0.962, indicating high accuracy. Calibration curves demonstrated good consistency between predicted survival rates and actual survival rates. The C-indexes for internal and external validation were 0.935 and 0.901, respectively, with calibration curves close to the ideal line.The model based on CTSI and clinical indicators can effectively predict the severity of AP, providing a scientific basis for clinical decision-making by physicians.

Funder

National Institute for Health Research Collaboration for Leadership in Applied Health Research and Care Yorkshire and Humber

Center for Clinical Trials, Japan Medical Association

High-level Hospital Construction Project of Guangdong Provincial People's Hospital

Publisher

Public Library of Science (PLoS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3