Biofiltration of toluene in the presence of ethyl acetate or n-hexane: Performance and microbial community

Author:

Xue Xiaojuan,Wang Hai,Zhai JianORCID,Nan Xujun

Abstract

This study describes the operation of two independent parallel laboratory-scale biotrickling filters (BTFs) to degrade different types of binary volatile organic compound (VOC) mixtures. Comparison experiments were conducted to evaluate the effects of two typical VOCs, i.e., ethyl acetate (a hydrophilic VOC) and n-hexane (a hydrophobic VOC) on the removal performance of toluene (a moderately hydrophobic VOC) in BTFs ‘‘A” and ‘‘B”, respectively. Experiments were carried out by stabilizing the toluene concentration at 1.64 g m−3 and varying the concentrations of gas-phase ethyl acetate (0.85–2.8 g m−3) and n-hexane (0.85–2.8 g m−3) at an empty bed residence time (EBRT) of 30 s. In the presence of ethyl acetate (850 ± 55 mg m-3), toluene exhibited the highest removal efficiency (95.4 ± 2.2%) in BTF “A”. However, the removal rate of toluene varied from 48.1 ± 6.9% to 70.1 ± 6.8% when 850 ± 123 mg m-3 to 2800 ± 136 mg m-3 of n-hexane was introduced into BTF “B”. The high-throughput sequencing data revealed that the genera Pseudomonas and Comamonadaceae_unclassified are the core microorganisms responsible for the degradation of toluene. The intensity of the inhibitory or synergistic effects on toluene removal was influenced by the type and concentration of the introduced VOC, as well as the number and activity of the genera Pseudomonas and Comamonadaceae_unclassified. It provides insights into the interaction between binary VOCs during biofiltration from a microscopic perspective.

Funder

the natural science foundation of Gansu province of China

the scientific research foundation for advanced talents of Shanghai Publishing and Printing College, China

Publisher

Public Library of Science (PLoS)

Reference36 articles.

1. World Health Organization. WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. https://apps.who.int/iris/handle/10665/345329.

2. PM2.5 and O3 relationships affected by the atmospheric oxidizing capacity in the Yangtze River Delta, China;M Qin;Sci Total Environ,2022

3. VOC species controlling O3 formation in ambient air and their sources in Kaifeng, China;Y Chen;Environ Sci Pollut R,2023

4. Emerging investigator series: 3D printed graphene-biopolymer aerogels for water contaminant removal: a proof of concept;A Masud;Environ Sci: Nano,2021

5. Catalytic treatment of organic solvent vapor in a baking oven;K Inoue;Chem Eng Technol,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3