Flexibility of a large blindly synthetized avatar database for occupational research: Example from the CONSTANCES cohort for stroke and knee pain

Author:

Fadel MarcORCID,Petot Julien,Gourraud Pierre-Antoine,Descatha AlexisORCID

Abstract

Objectives Though the rise of big data in the field of occupational health offers new opportunities especially for cross-cutting research, they raise the issue of privacy and security of data, especially when linking sensitive data from the field of insurance, occupational health or compensation claims. We aimed to validate a large, blinded synthesized database developed from the CONSTANCES cohort by comparing associations between three independently selected outcomes, and various exposures. Methods From the CONSTANCES cohort, a large synthetic dataset was constructed using the avatar method (Octopize) that is agnostic to the data primary or secondary data uses. Three main analyses of interest were chosen to compare associations between the raw and avatar dataset: risk of stroke (any stroke, and subtypes of stroke), risk of knee pain and limitations associated with knee pain. Logistic models were computed, and a qualitative comparison of paired odds ratio (OR) was made. Results Both raw and avatar datasets included 162,434 observations and 19 relevant variables. On the 172 paired raw/avatar OR that were computed, including stratified analyses on sex, more than 77% of the comparisons had a OR difference ≤0.5 and less than 7% had a discrepancy in the statistical significance of the associations, with a Cohen’s Kappa coefficient of 0.80. Conclusions This study shows the flexibility and the multiple usage of a synthetic database created with the avatar method in the particular field of occupational health, which can be shared in open access without risking re-identification and privacy issues and help bring new insights for complex phenomenon like return to work.

Funder

Conseil Régional des Pays de la Loire

Agence Nationale de la Recherche

CONSTANCES

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3