Enhanced blood glucose levels prediction with a smartwatch

Author:

Pikulin SeanORCID,Yehezkel IradORCID,Moskovitch Robert

Abstract

Ensuring stable blood glucose (BG) levels within the norm is crucial for potential long-term health complications prevention when managing a chronic disease like Type 1 diabetes (T1D), as well as body weight. Therefore, accurately forecasting blood sugar levels holds significant importance for clinicians and specific users, such as type one diabetic patients. In recent years, Continuous Glucose Monitoring (CGM) devices have been developed and are now in use. However, the ability to forecast future blood glucose values is essential for better management. Previous studies proposed the use of food intake documentation in order to enhance the forecasting accuracy. Unfortunately, these methods require the participants to manually record their daily activities such as food intake, drink and exercise, which creates somewhat inaccurate data, and is hard to maintain along time. To reduce the burden on participants and improve the accuracy of BG level predictions, as well as optimize training and prediction times, this study proposes a framework that continuously tracks participants’ movements using a smartwatch. The framework analyzes sensor data and allows users to document their activities. We developed a model incorporating BG data, smartwatch sensor data, and user-documented activities. This model was applied to a dataset we collected from a dozen participants. Our study’s results indicate that documented activities did not enhance BG level predictions. However, using smartwatch sensors, such as heart rate and step detector data, in addition to blood glucose measurements from the last sixty minutes, significantly improved the predictions.

Funder

Ministry of Science, Technology and Space

Publisher

Public Library of Science (PLoS)

Reference40 articles.

1. The challenge of predicting blood glucose concentration changes in patients with type I diabetes;NC Borle;Health Informatics Journal,2021

2. Khambatta C. Everyone Should Track Their Blood Sugar—Not Just People With Diabetes Like Me; 2015. Available from: https://www.kqed.org/futureofyou/2832/everyone-should-track-their-blood-sugar-not-just-people-with-diabetes-like-me.

3. Continuous glucose monitoring: a review of successes, challenges, and opportunities;D Rodbard;Diabetes technology & therapeutics,2016

4. Artificial pancreas: past, present, future;C Cobelli;Diabetes,2011

5. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes;AZ Woldaregay;Artificial intelligence in medicine,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3