Emergence failure of early epidemics: A mathematical modeling approach

Author:

Breban RomulusORCID

Abstract

Epidemic or pathogen emergence is the phenomenon by which a poorly transmissible pathogen finds its evolutionary pathway to become a mutant that can cause an epidemic. Many mathematical models of pathogen emergence rely on branching processes. Here, we discuss pathogen emergence using Markov chains, for a more tractable analysis, generalizing previous work by Kendall and Bartlett about disease invasion. We discuss the probability of emergence failure for early epidemics, when the number of infected individuals is small and the number of the susceptible individuals is virtually unlimited. Our formalism addresses both directly transmitted and vector-borne diseases, in the cases where the original pathogen is 1) one step-mutation away from the epidemic strain, and 2) undergoing a long chain of neutral mutations that do not change the epidemiology. We obtain analytic results for the probabilities of emergence failure and two features transcending the transmission mechanism. First, the reproduction number of the original pathogen is determinant for the probability of pathogen emergence, more important than the mutation rate or the transmissibility of the emerged pathogen. Second, the probability of mutation within infected individuals must be sufficiently high for the pathogen undergoing neutral mutations to start an epidemic, the mutation threshold depending again on the basic reproduction number of the original pathogen. Finally, we discuss the parameterization of models of pathogen emergence, using SARS-CoV1 as an example of zoonotic emergence and HIV as an example for the emergence of drug resistance. We also discuss assumptions of our models and implications for epidemiology.

Publisher

Public Library of Science (PLoS)

Reference99 articles.

1. World Health Organization. The world health report—fighting disease, fostering development 1996. World Health Organization. 1996. Available from: www.who.int/whr/1996/en/.

2. Ecological origins of novel human pathogens;M Woolhouse;Crit Rev Microbiol,2007

3. Temporal trends in the discovery of human viruses;MEJ Woolhouse;P Roy Soc Lond B Bio,2008

4. Global rise in human infectious disease outbreaks;KF Smith;J R Soc Interface,2014

5. Global trends in emerging infectious diseases;KE Jones;Nature,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3