Predation cues induce predator specific changes in olfactory neurons encoding defensive responses in agile frog tadpoles

Author:

Gazzola Andrea,Ratto Daniela,Perrucci Fabio,Occhinegro Alessandra,Leone Roberta,Giammello Francesca,Balestrieri Alessandro,Pellitteri-Rosa DanieleORCID,Rossi Paola,Brandalise FedericoORCID

Abstract

Although behavioural defensive responses have been recorded several times in both laboratory and natural habitats, their neural mechanisms have seldom been investigated. To explore how chemical, water-borne cues are conveyed to the forebrain and instruct behavioural responses in anuran larvae, we conditioned newly hatched agile frog tadpoles using predator olfactory cues, specifically either native odonate larvae or alien crayfish kairomones. We expected chronic treatments to influence the basal neuronal activity of the tadpoles’ mitral cells and alter their sensory neuronal connections, thereby impacting information processing. Subsequently, these neurons were acutely perfused, and their responses were compared with the defensive behaviour of tadpoles previously conditioned and exposed to the same cues. Tadpoles conditioned with odonate cues differed in both passive and active cell properties compared to those exposed to water (controls) or crayfish cues. The observed upregulation of membrane conductance and increase in both the number of active synapses and receptor density at the postsynaptic site are believed to have enhanced their responsiveness to external stimuli. Odonate cues also affected the resting membrane potential and firing rate of mitral cells during electrophysiological patch-clamp recordings, suggesting a rearrangement of the repertoire of voltage-dependent conductances expressed in cell membranes. These recorded neural changes may modulate the induction of an action potential and transmission of information. Furthermore, the recording of neural activity indicated that the lack of defensive responses towards non-native predators is due to the non-recognition of their olfactory cues.

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3