Multi-Input data ASsembly for joint Analysis (MIASA): A framework for the joint analysis of disjoint sets of variables

Author:

Raharinirina Nomenjanahary AlexiaORCID,Sunkara Vikram,von Kleist MaxORCID,Fackeldey Konstantin,Weber Marcus

Abstract

The joint analysis of two datasets X and Y that describe the same phenomena (e.g. the cellular state), but measure disjoint sets of variables (e.g. mRNA vs. protein levels) is currently challenging. Traditional methods typically analyze single interaction patterns such as variance or covariance. However, problem-tailored external knowledge may contain multiple different information about the interaction between the measured variables. We introduce MIASA, a holistic framework for the joint analysis of multiple different variables. It consists of assembling multiple different information such as similarity vs. association, expressed in terms of interaction-scores or distances, for subsequent clustering/classification. In addition, our framework includes a novel qualitative Euclidean embedding method (qEE-Transition) which enables using Euclidean-distance/vector-based clustering/classification methods on datasets that have a non-Euclidean-based interaction structure. As an alternative to conventional optimization-based multidimensional scaling methods which are prone to uncertainties, our qEE-Transition generates a new vector representation for each element of the dataset union X Y in a common Euclidean space while strictly preserving the original ordering of the assembled interaction-distances. To demonstrate our work, we applied the framework to three types of simulated datasets: samples from families of distributions, samples from correlated random variables, and time-courses of statistical moments for three different types of stochastic two-gene interaction models. We then compared different clustering methods with vs. without the qEE-Transition. For all examples, we found that the qEE-Transition followed by Ward clustering had superior performance compared to non-agglomerative clustering methods but had a varied performance against ultrametric-based agglomerative methods. We also tested the qEE-Transition followed by supervised and unsupervised machine learning methods and found promising results, however, more work is needed for optimal parametrization of these methods. As a future perspective, our framework points to the importance of more developments and validation of distance-distribution models aiming to capture multiple-complex interactions between different variables.

Funder

Deutsche Forschungsgemeinschaf

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3