Immune dysfunction mediated by the competitive endogenous RNA network in fetal side placental tissue of polycystic ovary syndrome

Author:

Xie Ningning,Wang Fangfang,Chen Danqing,Zhou Jue,Xu JianORCID,Qu Fan

Abstract

Polycystic ovary syndrome (PCOS), a common endocrine and metabolic disorder affecting women in their reproductive years. Emerging evidence suggests that the maternal-fetal immune system is crucial for proper pregnancy. However, whether immune function is altered at the end of pregnancy in PCOS women and the underlying molecular mechanisms is currently unexplored. Herein, the basic maternal immune system was investigated (n = 136 in the control group; n = 103 in the PCOS group), and whole-transcriptome sequencing was carried out to quantify the mRNAs, miRNAs, and lncRNAs expression levels in fetal side placental tissue of women with PCOS. GO, KEGG, and GSEA analysis were employed for functional enrichment analysis. The process of identifying hub genes was conducted utilizing the protein-protein interaction network. CIBERSORT and Connectivity Map were deployed to determine immune cell infiltration and predict potential drugs, respectively. A network of mRNA-miRNA-lncRNA was constructed and then validated by qRT-PCR. First, red blood cell count, neutrophil count, lymphocyte count, hypersensitive C-reactive protein, and procalcitonin were significantly elevated, while placental growth factor was hindered in PCOS women. We identified 308 DEmRNAs, 77 DEmiRNAs, and 332 DElncRNAs in PCOS samples. Functional enrichment analysis revealed that there were significant changes observed in terms of the immune system, especially the chemokine pathway. Eight genes, including FOS, JUN, EGR1, CXCL10, CXCR1, CXCR2, CXCL11, and CXCL8, were considered as hub genes. Furthermore, the degree of infiltration of neutrophils was dramatically decreased in PCOS tissues. In total, 57 ceRNA events were finally obtained, and immune-related ceRNA networks were validated. Some potential drug candidates, such as enalapril and RS-100329, could have a function in PCOS therapy. This study represents the inaugural attempt to evaluate the immune system at the end of pregnancy and placental ceRNA networks in PCOS, indicating alterations in the chemokine pathway, which may impact fetal and placental growth, and provides new therapy targets.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

National Key Research and Development Program of China

Publisher

Public Library of Science (PLoS)

Reference106 articles.

1. Polycystic ovary syndrome;RJ Norman;Lancet (London, England),2007

2. The prevalence of polycystic ovarian syndrome in Chinese women: a meta-analysis;Q Wu;Annals of palliative medicine,2021

3. Pregnancy outcomes in women with polycystic ovary syndrome: a metaanalysis;LE Kjerulff;American journal of obstetrics and gynecology,2011

4. A meta-analysis of pregnancy outcomes in women with polycystic ovary syndrome;CM Boomsma;Human reproduction update,2006

5. Pregnancy complications in women with polycystic ovary syndrome;S Palomba;Human reproduction update,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3