Mutation accumulation in H. sapiens F508del CFTR countermands dN/dS type genomic analysis

Author:

Hong Jeong S.,Tindall Janice M.,Tindall Samuel R.,Sorscher Eric J.ORCID

Abstract

Understanding the mechanisms that underlie de novo mutations (DNMs) can be essential for interpreting human evolution, including aspects such as rapidly diverging genes, conservation of non-coding regulatory elements, and somatic DNA adaptation, among others. DNM accumulation in Homo sapiens is often limited to evaluation of human trios or quads across a single generation. Moreover, human SNPs in exons, pseudogenes, or other non-coding elements can be ancient and difficult to date, including polymorphisms attributable to founder effects and identity by descent. In this report, we describe multigenerational evolution of a human coding locus devoid of natural selection, and delineate patterns and principles by which DNMs have accumulated over the past few thousand years. We apply a data set comprising cystic fibrosis transmembrane conductance regulator (CFTR) alleles from 2,393 individuals homozygous for the F508del defect. Additional polymorphism on the F508del background diversified subsequent to a single mutational event during recent human history. Because F508del CFTR is without function, SNPs observed on this haplotype are effectively attributable to factors that govern accumulating de novo mutations. We show profound enhancement of transition, synonymous, and positionally repetitive polymorphisms, indicating appearance of DNMs in a manner evolutionarily designed to protect protein coding DNA against mutational attrition while promoting diversity.

Funder

National Institutes of Health

Publisher

Public Library of Science (PLoS)

Reference55 articles.

1. Longevity and plasticity of CFTR provide an argument for noncanonical SNP organization in hominid DNA;AE Hill;PLoS One,2014

2. SNP Formation Bias in the Murine Genome Provides Evidence for Parallel Evolution;ZE Plyler;Genome Biol Evol,2015

3. Whole-genome sequencing in autism identifies hot spots for de novo germline mutation;JJ Michaelson;Cell,2012

4. Epigenetic modifications affect the rate of spontaneous mutations in a pathogenic fungus.;M Habig;Nat Commun.,2021

5. Mutation bias reflects natural selection in Arabidopsis thaliana;JG Monroe;Nature,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3