Data-centric AI approach for automated wildflower monitoring

Author:

Schouten GerardORCID,Michielsen Bas S. H. T.ORCID,Gravendeel Barbara

Abstract

We present the Eindhoven Wildflower Dataset (EWD) as well as a PyTorch object detection model that is able to classify and count wildflowers. EWD, collected over two entire flowering seasons and expert annotated, contains 2,002 top-view images of flowering plants captured ‘in the wild’ in five different landscape types (roadsides, urban green spaces, cropland, weed-rich grassland, marshland). It holds a total of 65,571 annotations for 160 species belonging to 31 different families of flowering plants and serves as a reference dataset for automating wildflower monitoring and object detection in general. To ensure consistent annotations, we define species-specific floral count units and provide extensive annotation guidelines. With a 0.82 mAP (@IoU > 0.50) score the presented baseline model, trained on a balanced subset of EWD, is to the best of our knowledge superior in its class. Our approach empowers automated quantification of wildflower richness and abundance, which helps understanding and assessing natural capital, and encourages the development of standards for AI-based wildflower monitoring. The annotated EWD dataset and the code to train and run the baseline model are publicly available.

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3