Abstract
This paper presents the design and isolation enhancement of a filtering MIMO antenna with a radiation null for out-of-band suppressions suited for 5G sub-6 GHz communications. The MIMO antenna offers -10 dB impedance bandwidth functionality at the most prominent partial spectrum of the 5G NR n78 band for enabling wireless applications in base stations, ranging from 3.4 GHz to 3.61 GHz. To mitigate the redundancy of an RF filter and to achieve a strong filtering response, a radiation null is produced in the gain with four identical rectangular slots, which results in a significant gain drop of more than 8 dBi at the stopband. The geometrical design also allows 30 percent size reduction of single element. Subsequently, a closely spaced (0.11λ0) two-port MIMO antenna is implemented and with the utilization of the proposed rectangular shaped hollow stub parasitic element, the interelement isolation is significantly improved by more than 8 dB over the operational frequency range while retaining the filtering without any additional RF structure. The design simplification, peak gain of 5.4 dBi, near ideal response of diversity gain, ECC less than 0.03, congruency between simulated and measured results, and stable parameters make it a valuable choice for 3.5 GHz sub-6 GHz communications.
Funder
Institute of Information & communications Technology Planning & Evaluation
Publisher
Public Library of Science (PLoS)
Reference48 articles.
1. A survey on 5G usage scenarios and traffic models;J Navarro-Ortiz;IEEE Communications Surveys & Tutorials,2020
2. 5G communication: An overview of vehicle-to-everything, drones, and healthcare use-cases;H Ullah;IEEE Access,2019
3. AI-driven zero touch network and service management in 5G and beyond: Challenges and research directions;C Benzaid;Ieee Network,2020
4. Hussain M, Hussain A, Alibakhshikenari M, Falcone F, Limiti E. A simple geometrical frequency reconfigurable Antenna with Miniaturized Dimensions for 24.8/28GHz 5G Applications. In2022 16th European Conference on Antennas and Propagation (EuCAP) 2022 Mar 27 (pp. 1–3). IEEE.
5. Review of Antennas for Railway Communications;AK Arya;Journal of Electromagnetic Engineering and Science,2023