Abstract
Background
Proteins with low complexity regions (LCRs) have atypical sequence and structural features. Their amino acid composition varies from the expected, determined proteome-wise, and they do not follow the rules of structural folding that prevail in globular regions. One way to characterize these regions is by assessing the repeatability of a sequence, that is, calculating the local propensity of a region to be part of a repeat.
Results
We combine two local measures of low complexity, repeatability (using the RES algorithm) and fraction of the most frequent amino acid, to evaluate different proteomes, datasets of protein regions with specific features, and individual cases of proteins with extreme compositions. We apply a representation called ‘low complexity triangle’ as a proof-of-concept to represent the low complexity measured values. Results show that proteomes have distinct signatures in the low complexity triangle, and that these signatures are associated to complexity features of the sequences. We developed a web tool called LCT (http://cbdm-01.zdv.uni-mainz.de/~munoz/lct/) to allow users to calculate the low complexity triangle of a given protein or region of interest.
Conclusions
The low complexity triangle proves to be a suitable procedure to represent the general low complexity of a sequence or protein dataset. Homorepeats, direpeats, compositionally biased regions and globular regions occupy characteristic positions in the triangle. The described pipeline can be used to characterize LCRs and may help in quantifying the content of degenerated tandem repeats in proteins and proteomes.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Public Library of Science (PLoS)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献