In silico prediction of HIV-1-host molecular interactions and their directionality
-
Published:2022-02-08
Issue:2
Volume:18
Page:e1009720
-
ISSN:1553-7358
-
Container-title:PLOS Computational Biology
-
language:en
-
Short-container-title:PLoS Comput Biol
Author:
Chai HaitingORCID,
Gu QuanORCID,
Hughes JosephORCID,
Robertson David L.ORCID
Abstract
Human immunodeficiency virus type 1 (HIV-1) continues to be a major cause of disease and premature death. As with all viruses, HIV-1 exploits a host cell to replicate. Improving our understanding of the molecular interactions between virus and human host proteins is crucial for a mechanistic understanding of virus biology, infection and host antiviral activities. This knowledge will potentially permit the identification of host molecules for targeting by drugs with antiviral properties. Here, we propose a data-driven approach for the analysis and prediction of the HIV-1 interacting proteins (VIPs) with a focus on the directionality of the interaction: host-dependency versus antiviral factors. Using support vector machine learning models and features encompassing genetic, proteomic and network properties, our results reveal some significant differences between the VIPs and non-HIV-1 interacting human proteins (non-VIPs). As assessed by comparison with the HIV-1 infection pathway data in the Reactome database (sensitivity > 90%, threshold = 0.5), we demonstrate these models have good generalization properties. We find that the ‘direction’ of the HIV-1-host molecular interactions is also predictable due to different characteristics of ‘forward’/pro-viral versus ‘backward’/pro-host proteins. Additionally, we infer the previously unknown direction of the interactions between HIV-1 and 1351 human host proteins. A web server for performing predictions is available at http://hivpre.cvr.gla.ac.uk/.
Funder
Chinese Scholarship Council
Medical Research Council
Publisher
Public Library of Science (PLoS)
Subject
Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics