Comprehensive analysis of cancer breakpoints reveals signatures of genetic and epigenetic contribution to cancer genome rearrangements

Author:

Cheloshkina Kseniia,Poptsova MariaORCID

Abstract

Understanding mechanisms of cancer breakpoint mutagenesis is a difficult task and predictive models of cancer breakpoint formation have to this time failed to achieve even moderate predictive power. Here we take advantage of a machine learning approach that can gather important features from big data and quantify contribution of different factors. We performed comprehensive analysis of almost 630,000 cancer breakpoints and quantified the contribution of genomic and epigenomic features–non-B DNA structures, chromatin organization, transcription factor binding sites and epigenetic markers. The results showed that transcription and formation of non-B DNA structures are two major processes responsible for cancer genome fragility. Epigenetic factors, such as chromatin organization in TADs, open/closed regions, DNA methylation, histone marks are less informative but do make their contribution. As a general trend, individual features inside the groups show a relatively high contribution of G-quadruplexes and repeats and CTCF, GABPA, RXRA, SP1, MAX and NR2F2 transcription factors. Overall, the cancer breakpoint landscape can be represented by well-predicted hotspots and poorly predicted individual breakpoints scattered across genomes. We demonstrated that hotspot mutagenesis has genomic and epigenomic factors, and not all individual cancer breakpoints are just random noise but have a definite mutation signature. Besides we found a long-range action of some features on breakpoint mutagenesis. Combining omics data, cancer-specific individual feature importance and adding the distant to local features, predictive models for cancer breakpoint formation achieved 70–90% ROC AUC for different cancer types; however precision remained low at 2% and the recall did not exceed 50%. On the one hand, the power of models strongly correlates with the size of available cancer breakpoint and epigenomic data, and on the other hand finding strong determinants of cancer breakpoint formation still remains a challenge. The strength of predictive signals of each group and of each feature inside a group can be converted into cancer-specific breakpoint mutation signatures. Overall our results add to the understanding of cancer genome rearrangement processes.

Funder

Centre of Fundamental Research of the National Research University Higher School of Economics

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference38 articles.

1. The Cancer Genome Atlas (TCGA). Available from: https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga.

2. International network of cancer genome projects;C International Cancer Genome;Nature,2010

3. Pan-cancer analysis of whole genomes;Consortium ITP-CAoWG;Nature,2020

4. Chromatin organization is a major influence on regional mutation rates in human cancer cells;B Schuster-Bockler;Nature,2012

5. Cell-of-origin chromatin organization shapes the mutational landscape of cancer;P Polak;Nature,2015

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3