Abstract
Humans can implicitly learn complex perceptuo-motor skills over the course of large numbers of trials. This likely depends on our becoming better able to take advantage of ever richer and temporally deeper predictive relationships in the environment. Here, we offer a novel characterization of this process, fitting a non-parametric, hierarchical Bayesian sequence model to the reaction times of human participants’ responses over ten sessions, each comprising thousands of trials, in a serial reaction time task involving higher-order dependencies. The model, adapted from the domain of language, forgetfully updates trial-by-trial, and seamlessly combines predictive information from shorter and longer windows onto past events, weighing the windows proportionally to their predictive power. As the model implies a posterior over window depths, we were able to determine how, and how many, previous sequence elements influenced individual participants’ internal predictions, and how this changed with practice.
Already in the first session, the model showed that participants had begun to rely on two previous elements (i.e., trigrams), thereby successfully adapting to the most prominent higher-order structure in the task. The extent to which local statistical fluctuations in trigram frequency influenced participants’ responses waned over subsequent sessions, as participants forgot the trigrams less and evidenced skilled performance. By the eighth session, a subset of participants shifted their prior further to consider a context deeper than two previous elements. Finally, participants showed resistance to interference and slow forgetting of the old sequence when it was changed in the final sessions. Model parameters for individual participants covaried appropriately with independent measures of working memory and error characteristics. In sum, the model offers the first principled account of the adaptive complexity and nuanced dynamics of humans’ internal sequence representations during long-term implicit skill learning.
Funder
Max Planck Institute
Alexander von Humboldt-Stiftung
National Brain Research Program
Hungarian Scientific Research Fund
IDEXLYON Fellowship of the University of Lyon
János Bolyai Research Scholarship
Publisher
Public Library of Science (PLoS)
Subject
Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics
Reference60 articles.
1. The serial reaction time task: implicit motor skill learning?;EM Robertson;Journal of Neuroscience,2007
2. Statistical learning of higher-order temporal structure from visual shape sequences;J Fiser;Journal of Experimental Psychology: Learning, Memory, and Cognition,2002
3. Statistical learning by 8-month-old infants;JR Saffran;Science,1996
4. From syllables to syntax: multilevel statistical learning by 12-month-old infants;JR Saffran;Infancy,2003
5. Word recognition: Context effects without priming;D Norris;Cognition,1986
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献