Tracking human skill learning with a hierarchical Bayesian sequence model

Author:

Éltető NoémiORCID,Nemeth DezsőORCID,Janacsek Karolina,Dayan PeterORCID

Abstract

Humans can implicitly learn complex perceptuo-motor skills over the course of large numbers of trials. This likely depends on our becoming better able to take advantage of ever richer and temporally deeper predictive relationships in the environment. Here, we offer a novel characterization of this process, fitting a non-parametric, hierarchical Bayesian sequence model to the reaction times of human participants’ responses over ten sessions, each comprising thousands of trials, in a serial reaction time task involving higher-order dependencies. The model, adapted from the domain of language, forgetfully updates trial-by-trial, and seamlessly combines predictive information from shorter and longer windows onto past events, weighing the windows proportionally to their predictive power. As the model implies a posterior over window depths, we were able to determine how, and how many, previous sequence elements influenced individual participants’ internal predictions, and how this changed with practice. Already in the first session, the model showed that participants had begun to rely on two previous elements (i.e., trigrams), thereby successfully adapting to the most prominent higher-order structure in the task. The extent to which local statistical fluctuations in trigram frequency influenced participants’ responses waned over subsequent sessions, as participants forgot the trigrams less and evidenced skilled performance. By the eighth session, a subset of participants shifted their prior further to consider a context deeper than two previous elements. Finally, participants showed resistance to interference and slow forgetting of the old sequence when it was changed in the final sessions. Model parameters for individual participants covaried appropriately with independent measures of working memory and error characteristics. In sum, the model offers the first principled account of the adaptive complexity and nuanced dynamics of humans’ internal sequence representations during long-term implicit skill learning.

Funder

Max Planck Institute

Alexander von Humboldt-Stiftung

National Brain Research Program

Hungarian Scientific Research Fund

IDEXLYON Fellowship of the University of Lyon

János Bolyai Research Scholarship

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference60 articles.

1. The serial reaction time task: implicit motor skill learning?;EM Robertson;Journal of Neuroscience,2007

2. Statistical learning of higher-order temporal structure from visual shape sequences;J Fiser;Journal of Experimental Psychology: Learning, Memory, and Cognition,2002

3. Statistical learning by 8-month-old infants;JR Saffran;Science,1996

4. From syllables to syntax: multilevel statistical learning by 12-month-old infants;JR Saffran;Infancy,2003

5. Word recognition: Context effects without priming;D Norris;Cognition,1986

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3