Chromosomal neighbourhoods allow identification of organ specific changes in gene expression

Author:

Das Roy RishiORCID,Hallikas OutiORCID,Christensen Mona M.ORCID,Renvoisé Elodie,Jernvall JukkaORCID

Abstract

Although most genes share their chromosomal neighbourhood with other genes, distribution of genes has not been explored in the context of individual organ development; the common focus of developmental biology studies. Because developmental processes are often associated with initially subtle changes in gene expression, here we explored whether neighbouring genes are informative in the identification of differentially expressed genes. First, we quantified the chromosomal neighbourhood patterns of genes having related functional roles in the mammalian genome. Although the majority of protein coding genes have at least five neighbours within 1 Mb window around each gene, very few of these neighbours regulate development of the same organ. Analyses of transcriptomes of developing mouse molar teeth revealed that whereas expression of genes regulating tooth development changes, their neighbouring genes show no marked changes, irrespective of their level of expression. Finally, we test whether inclusion of gene neighbourhood in the analyses of differential expression could provide additional benefits. For the analyses, we developed an algorithm, called DELocal that identifies differentially expressed genes by comparing their expression changes to changes in adjacent genes in their chromosomal regions. Our results show that DELocal removes detection bias towards large changes in expression, thereby allowing identification of even subtle changes in development. Future studies, including the detection of differential expression, may benefit from, and further characterize the significance of gene-gene neighbour relationships.

Funder

Academy of Finland

Jane ja Aatos Erkon Säätiö

John Templeton Foundation

Sigrid Juséliuksen Säätiö

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modelling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference53 articles.

1. Genetic regulatory mechanisms in the synthesis of proteins;F Jacob;J Mol Biol,1961

2. Operon and non-operon gene clusters in the C. elegans genome;T Blumenthal;WormBook,2015

3. WormBook: the online review of Caenorhabditis elegans biology;LR Girard;Nucleic Acids Res,2007

4. Regulatory Enhancer-Core-Promoter Communication via Transcription Factors and Cofactors.;MA Zabidi;Trends in genetics: TIG.,2016

5. Clustering of housekeeping genes provides a unified model of gene order in the human genome;MJ Lercher;Nature genetics,2002

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3