Brucella suppress STING expression via miR-24 to enhance infection

Author:

Khan Mike,Harms Jerome S.,Liu Yiping,Eickhoff JensORCID,Tan Jin WenORCID,Hu TonyORCID,Cai Fengwei,Guimaraes Erika,Oliveira Sergio Costa,Dahl Richard,Cheng Yong,Gutman DeliaORCID,Barber Glen N.,Splitter Gary A.,Smith Judith A.ORCID

Abstract

Brucellosis, caused by a number of Brucella species, remains the most prevalent zoonotic disease worldwide. Brucella establish chronic infections within host macrophages despite triggering cytosolic innate immune sensors, including Stimulator of Interferon Genes (STING), which potentially limit infection. In this study, STING was required for control of chronic Brucella infection in vivo. However, early during infection, Brucella down-regulated STING mRNA and protein. Down-regulation occurred post-transcriptionally, required live bacteria, the Brucella type IV secretion system, and was independent of host IRE1-RNase activity. STING suppression occurred in MyD88-/- macrophages and was not induced by Toll-like receptor agonists or purified Brucella lipopolysaccharide (LPS). Rather, Brucella induced a STING-targeting microRNA, miR-24-2, in a type IV secretion system-dependent manner. Furthermore, STING downregulation was inhibited by miR-24 anti-miRs and in Mirn23a locus-deficient macrophages. Failure to suppress STING expression in Mirn23a-/- macrophages correlated with diminished Brucella replication, and was rescued by exogenous miR-24. Mirn23a-/- mice were also more resistant to splenic colonization one week post infection. Anti-miR-24 potently suppressed replication in wild type, but much less in STING-/- macrophages, suggesting most of the impact of miR-24 induction on replication occurred via STING suppression. In summary, Brucella sabotages cytosolic surveillance by miR-24-dependent suppression of STING expression; post-STING activation “damage control” via targeted STING destruction may enable establishment of chronic infection.

Publisher

Public Library of Science (PLoS)

Subject

Virology,Genetics,Molecular Biology,Immunology,Microbiology,Parasitology

Reference68 articles.

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3