Utilisation of QSPR ODT modelling and odour vector modelling to predict Cannabis sativa odour

Author:

Wise Kimber,Phan NicholasORCID,Selby-Pham JamieORCID,Simovich Tomer,Gill Harsharn

Abstract

Cannabis flower odour is an important aspect of product quality as it impacts the sensory experience when administered, which can affect therapeutic outcomes in paediatric patient populations who may reject unpalatable products. However, the cannabis industry has a reputation for having products with inconsistent odour descriptions and misattributed strain names due to the costly and laborious nature of sensory testing. Herein, we evaluate the potential of using odour vector modelling for predicting the odour intensity of cannabis products. Odour vector modelling is proposed as a process for transforming routinely produced volatile profiles into odour intensity (OI) profiles which are hypothesised to be more informative to the overall product odour (sensory descriptor; SD). However, the calculation of OI requires compound odour detection thresholds (ODT), which are not available for many of the compounds present in natural volatile profiles. Accordingly, to apply the odour vector modelling process to cannabis, a QSPR statistical model was first produced to predict ODT from physicochemical properties. The model presented herein was produced by polynomial regression with 10-fold cross-validation from 1,274 median ODT values to produce a model with R2 = 0.6892 and a 10-fold R2 = 0.6484. This model was then applied to terpenes which lacked experimentally determined ODT values to facilitate vector modelling of cannabis OI profiles. Logistic regression and k-means unsupervised cluster analysis was applied to both the raw terpene data and the transformed OI profiles to predict the SD of 265 cannabis samples and the accuracy of the predictions across the two datasets was compared. Out of the 13 SD categories modelled, OI profiles performed equally well or better than the volatile profiles for 11 of the SD, and across all SD the OI data was on average 21.9% more accurate (p = 0.031). The work herein is the first example of the application of odour vector modelling to complex volatile profiles of natural products and demonstrates the utility of OI profiles for the prediction of cannabis odour. These findings advance both the understanding of the odour modelling process which has previously only been applied to simple mixtures, and the cannabis industry which can utilise this process for more accurate prediction of cannabis odour and thereby reduce unpleasant patient experiences.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3