CHO-produced RBD-Fc subunit vaccines with alternative adjuvants generate immune responses against SARS-CoV-2

Author:

Laotee Sedthawut,Duangkaew Methawee,Jivapetthai Araya,Tharakhet Kittipan,Kaewpang Papatsara,Prompetchara Eakachai,Phumiamorn Supaporn,Sapsutthipas Sompong,Trisiriwanich Sakalin,Somsaard Thitiporn,Roytrakul Sittiruk,Duangkhae Parichat,Ongpipattanakul Boonsri,Limpikirati PatanachaiORCID,Pornputtapong NatapolORCID,Arunmanee WanatchapornORCID

Abstract

Subunit vaccines feature critical advantages over other vaccine platforms such as stability, price, and minimal adverse effects. To maximize immunological protection of subunit vaccines, adjuvants are considered as main components that are formulated within the subunit vaccine. They can modulate adverse effects and enhance immune outcomes. However, the most suitable formulation providing the best immunological outcomes and safety are still under investigation. In this report, we combined recombinant RBD with human IgG1 Fc to create an RBD dimer. This fusion protein was expressed in CHO and formulated with alternative adjuvants with different immune activation including Montanide ISA51, Poly (I:C), and MPLA/Quil-A® as potential vaccine candidate formulations. Using the murine model, a potent induction of anti-RBD IgG antibodies in immunized mice sera were observed. IgG subclass analyses (IgG1/IgG2a) illustrated that all adjuvanted formulations could stimulate both Th1 and Th2-type immune responses in particular Poly (I:C) and MPLA/Quil-A®, eliciting greater balance. In addition, Montanide ISA51-formulated RBD-Fc vaccination provided a promising level of neutralizing antibodies against live wild-type SARS-CoV-2 in vitro followed by Poly (I:C) and MPLA/Quil-A®, respectively. Also, mice sera from adjuvanted formulations could strongly inhibit RBD:ACE2 interaction. This study offers immunogenicity profiles, forecasted safety based on Vaccine-associated enhanced disease (VAED) caused by Th1-skewed immunity, and neutralizing antibody analysis of candidates of RBD-Fc-based subunit vaccine formulations to obtain an alternative subunit vaccine formulation against SARS-CoV-2.

Funder

Graduate School of Chulalongkorn University

Government Pharmaceutical Organization

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3