Transcriptomics of ivermectin response in Caenorhabditis elegans: Integrating abamectin quantitative trait loci and comparison to the Ivermectin-exposed DA1316 strain

Author:

Dube FarukORCID,Hinas AndreaORCID,Delhomme NicolasORCID,Åbrink Magnus,Svärd Staffan,Tydén Eva

Abstract

Parasitic nematodes pose a significant threat to human and animal health, as well as cause economic losses in the agricultural sector. The use of anthelmintic drugs, such as Ivermectin (IVM), to control these parasites has led to widespread drug resistance. Identifying genetic markers of resistance in parasitic nematodes can be challenging, but the free-living nematode Caenorhabditis elegans provides a suitable model. In this study, we aimed to analyze the transcriptomes of adult C. elegans worms of the N2 strain exposed to the anthelmintic drug Ivermectin (IVM), and compare them to those of the resistant strain DA1316 and the recently identified Abamectin Quantitative Trait Loci (QTL) on chromosome V. We exposed pools of 300 adult N2 worms to IVM (10−7 and 10−8 M) for 4 hours at 20°C, extracted total RNA and sequenced it on the Illumina NovaSeq6000 platform. Differentially expressed genes (DEGs) were determined using an in-house pipeline. The DEGs were compared to genes from a previous microarray study on IVM-resistant C. elegans and Abamectin-QTL. Our results revealed 615 DEGs (183 up-regulated and 432 down-regulated genes) from diverse gene families in the N2 C. elegans strain. Of these DEGs, 31 overlapped with genes from IVM-exposed adult worms of the DA1316 strain. We identified 19 genes, including the folate transporter (folt-2) and the transmembrane transporter (T22F3.11), which exhibited an opposite expression in N2 and the DA1316 strain and were deemed potential candidates. Additionally, we compiled a list of potential candidates for further research including T-type calcium channel (cca-1), potassium chloride cotransporter (kcc-2), as well as other genes such as glutamate-gated channel (glc-1) that mapped to the Abamectin-QTL.

Funder

Swedish Research Council FORMAS

Swedish Research Council Vetenskapsrådet

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3