Epithelial polarization in the 3D matrix requires MST3 signaling to regulate ZO-1 position

Author:

Chan Chee-Hong,Lin Pei,Yang Tse-Yen,Bao Bo-Ying,Jhong Jhen-Yang,Weng Yui-Ping,Lee Te-Hsiu,Cheng Hui-Fen,Lu Te-LingORCID

Abstract

Apical-basal cell polarity must be tightly controlled for epithelial cyst and tubule formation, and these are important functional units in various epithelial organs. Polarization is achieved through the coordination of several molecules that divide cells into an apical domain and a basolateral domain, which are separated from tight and adherens junctions. Cdc42 regulates cytoskeletal organization and the tight junction protein ZO-1 at the apical margin of epithelial cell junctions. MST kinases control organ size through the regulation of cell proliferation and cell polarity. For example, MST1 relays the Rap1 signal to induce cell polarity and adhesion of lymphocytes. Our previous study showed that MST3 was involved in E-cadherin regulation and migration in MCF7 cells. In vivo, MST3 knockout mice exhibited higher ENaC expression at the apical site of renal tubules, resulting in hypertension. However, it was not clear whether MST3 was involved in cell polarity. Here, control MDCK cells, HA-MST3 and HA-MST3 kinase-dead (HA-MST3-KD) overexpressing MDCK cells were cultured in collagen or Matrigel. We found that the cysts of HA-MST3 cells were fewer and smaller than those of control MDCK cells; ZO-1 was delayed to the apical site of cysts and in cell-cell contact in the Ca2+ switch assay. However, HA-MST3-KD cells exhibited multilumen cysts. Intensive F-actin stress fibers were observed in HA-MST3 cells with higher Cdc42 activity; in contrast, HA-MST3-KD cells had lower Cdc42 activity and weaker F-actin staining. In this study, we identified a new MST3 function in the establishment of cell polarity through Cdc42 regulation.

Funder

National Research Council of Science and Technology

Chang Bing Show Chwan Memorial Hospital

Tainan Municipal An-Nan Hospital

China Medical University, Taiwan

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3