Deep learning workflow to support in-flight processing of digital aerial imagery for wildlife population surveys

Author:

Ke Tsung-WeiORCID,Yu Stella X.ORCID,Koneff Mark D.ORCID,Fronczak David L.,Fara Luke J.,Harrison Travis J.,Landolt Kyle L.,Hlavacek Enrika J.,Lubinski Brian R.,White Timothy P.

Abstract

Deep learning shows promise for automating detection and classification of wildlife from digital aerial imagery to support cost-efficient remote sensing solutions for wildlife population monitoring. To support in-flight orthorectification and machine learning processing to detect and classify wildlife from imagery in near real-time, we evaluated deep learning methods that address hardware limitations and the need for processing efficiencies to support the envisioned in-flight workflow. We developed an annotated dataset for a suite of marine birds from high-resolution digital aerial imagery collected over open water environments to train the models. The proposed 3-stage workflow for automated, in-flight data processing includes: 1) image filtering based on the probability of any bird occurrence, 2) bird instance detection, and 3) bird instance classification. For image filtering, we compared the performance of a binary classifier with Mask Region-based Convolutional Neural Network (Mask R-CNN) as a means of sub-setting large volumes of imagery based on the probability of at least one bird occurrence in an image. On both the validation and test datasets, the binary classifier achieved higher performance than Mask R-CNN for predicting bird occurrence at the image-level. We recommend the binary classifier over Mask R-CNN for workflow first-stage filtering. For bird instance detection, we leveraged Mask R-CNN as our detection framework and proposed an iterative refinement method to bootstrap our predicted detections from loose ground-truth annotations. We also discuss future work to address the taxonomic classification phase of the envisioned workflow.

Funder

Fireball International Services Corporation Grants

US Geological Survey

Publisher

Public Library of Science (PLoS)

Reference58 articles.

1. Calculating limits to the allowable human-caused mortality of cetaceans and pinnipeds;PR Wade;Marine Mammal Science,1998

2. Adaptive harvest management of North American waterfowl populations: a brief history and future prospects;JD Nichols;Journal of Ornithology,2007

3. Recovery trends in marine mammal populations;AM Magera;PLoS ONE,2013

4. Winship AJ, Kinlan BP, White TP, Leirness JB, Christensen J. Modeling At-Sea Density of Marine Birds to Support Atlantic Marine Renewable Energy Planning: Final Report. U.S. Department of the Interior, Bureau of Ocean Energy Management, Office of Renewable Energy Programs, Sterling, VA. OCS Study BOEM. 2018; 10: 67.

5. Spatial ecology of long-tailed ducks and white-winged scoters wintering on Nantucket Shoals;TP White;Ecosphere,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3