Abstract
Buffelgrass (Pennisetum ciliare) is an invasive plant introduced into Mexico’s Sonoran desert for cattle grazing and has converted large areas of native thorn scrub. One of the invasion mechanisms buffelgrass uses to invade is allelopathy, which consists of the production and secretion of allelochemicals that exert adverse effects on other plants’ growth. The plant microbiome also plays a vital role in establishing invasive plants and host growth and development. However, little is known about the buffelgrass root-associated bacteria and the effects of allelochemicals on the microbiome. We used 16S rRNA gene amplicon sequencing to obtain the microbiome of buffelgrass and compare it between samples treated with root exacknudates and aqueous leachates as allelochemical exposure and samples without allelopathic exposure in two different periods. The Shannon diversity values were between H’ = 5.1811–5.5709, with 2,164 reported bacterial Amplicon Sequence Variants (ASVs). A total of 24 phyla were found in the buffelgrass microbiome, predominantly Actinobacteria, Proteobacteria, and Acidobacteria. At the genus level, 30 different genera comprised the buffelgrass core microbiome. Our results show that buffelgrass recruits microorganisms capable of thriving under allelochemical conditions and may be able to metabolize them (e.g., Planctomicrobium, Aurantimonas, and Tellurimicrobium). We also found that the community composition of the microbiome changes depending on the developmental state of buffelgrass (p = 0.0366; ANOSIM). These findings provide new insights into the role of the microbiome in the establishment of invasive plant species and offer potential targets for developing strategies to control buffelgrass invasion.
Funder
Consejo Nacional de Ciencia y Tecnología
Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México, DGAPA-PAPIIT-UNAM
Publisher
Public Library of Science (PLoS)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献