Causal speech enhancement using dynamical-weighted loss and attention encoder-decoder recurrent neural network

Author:

Peracha Fahad Khalil,Khattak Muhammad Irfan,Salem NemaORCID,Saleem NasirORCID

Abstract

Speech enhancement (SE) reduces background noise signals in target speech and is applied at the front end in various real-world applications, including robust ASRs and real-time processing in mobile phone communications. SE systems are commonly integrated into mobile phones to increase quality and intelligibility. As a result, a low-latency system is required to operate in real-world applications. On the other hand, these systems need efficient optimization. This research focuses on the single-microphone SE operating in real-time systems with better optimization. We propose a causal data-driven model that uses attention encoder-decoder long short-term memory (LSTM) to estimate the time-frequency mask from a noisy speech in order to make a clean speech for real-time applications that need low-latency causal processing. The encoder-decoder LSTM and a causal attention mechanism are used in the proposed model. Furthermore, a dynamical-weighted (DW) loss function is proposed to improve model learning by varying the weight loss values. Experiments demonstrated that the proposed model consistently improves voice quality, intelligibility, and noise suppression. In the causal processing mode, the LSTM-based estimated suppression time-frequency mask outperforms the baseline model for unseen noise types. The proposed SE improved the STOI by 2.64% (baseline LSTM-IRM), 6.6% (LSTM-KF), 4.18% (DeepXi-KF), and 3.58% (DeepResGRU-KF). In addition, we examine word error rates (WERs) using Google’s Automatic Speech Recognition (ASR). The ASR results show that error rates decreased from 46.33% (noisy signals) to 13.11% (proposed) 15.73% (LSTM), and 14.97% (LSTM-KF).

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference53 articles.

1. Biosignal sensors and deep learning-based speech recognition: A review;W Lee;Sensors,2021

2. Automatic speech recognition and speech variability: A review;M Benzeghiba;Speech communication,2007

3. Model-based speech enhancement for intelligibility improvement in binaural hearing aids;MS Kavalekalam;IEEE/ACM Transactions on Audio, Speech, and Language Processing,2018

4. Suppression of acoustic noise in speech using spectral subtraction;S Boll;IEEE Transactions on acoustics, speech, and signal processing,1979

5. Noise reduction based on soft masks by incorporating SNR uncertainty in frequency domain;N Saleem;Circuits, Systems, and Signal Processing,2018

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3