CLAHE-CapsNet: Efficient retina optical coherence tomography classification using capsule networks with contrast limited adaptive histogram equalization

Author:

Opoku MichaelORCID,Weyori Benjamin Asubam,Adekoya Adebayo Felix,Adu Kwabena

Abstract

Manual detection of eye diseases using retina Optical Coherence Tomography (OCT) images by Ophthalmologists is time consuming, prone to errors and tedious. Previous researchers have developed a computer aided system using deep learning-based convolutional neural networks (CNNs) to aid in faster detection of the retina diseases. However, these methods find it difficult to achieve better classification performance due to noise in the OCT image. Moreover, the pooling operations in CNN reduce resolution of the image that limits the performance of the model. The contributions of the paper are in two folds. Firstly, this paper makes a comprehensive literature review to establish current-state-of-act methods successfully implemented in retina OCT image classifications. Additionally, this paper proposes a capsule network coupled with contrast limited adaptive histogram equalization (CLAHE-CapsNet) for retina OCT image classification. The CLAHE was implemented as layers to minimize the noise in the retina image for better performance of the model. A three-layer convolutional capsule network was designed with carefully chosen hyperparameters. The dataset used for this study was presented by University of California San Diego (UCSD). The dataset consists of 84,495 X-Ray images (JPEG) and 4 categories (NORMAL, CNV, DME, and DRUSEN). The images went through a grading system consisting of multiple layers of trained graders of expertise for verification and correction of image labels. Evaluation experiments were conducted and comparison of results was done with state-of-the-art models to find out the best performing model. The evaluation metrics; accuracy, sensitivity, precision, specificity, and AUC are used to determine the performance of the models. The evaluation results show that the proposed model achieves the best performing model of accuracies of 97.7%, 99.5%, and 99.3% on overall accuracy (OA), overall sensitivity (OS), and overall precision (OP), respectively. The results obtained indicate that the proposed model can be adopted and implemented to help ophthalmologists in detecting retina OCT diseases.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference72 articles.

1. WHO, Blindness and Vision Impairment, 2019. www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment

2. The Lancet Global Health commission on Global Eye Health: vision beyond 2020;MJ Burton;Lancet Glob Health,2021

3. Prevalence of undiagnosed age-related macular degeneration in primary eye care;C. Neely;JAMA Ophthalmol,2017

4. Automated staging of age-related macular degeneration using optical coherence tomography;F. G. Venhuizen;Inv. Ophthalmol. Vis. Sci,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3