Mechanisms involved in nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox)-derived reactive oxygen species (ROS) modulation of muscle function in human and dog bladders

Author:

Frara NagatORCID,Giaddui Dania,Braverman Alan S.,Jawawdeh Kais,Wu Changhao,Ruggieri, Sr Michael R.ORCID,Barbe Mary F.

Abstract

Roles of redox signaling in bladder function is still under investigation. We explored the physiological role of reactive oxygen species (ROS) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) in regulating bladder function in humans and dogs. Mucosa-denuded bladder smooth muscle strips obtained from 7 human organ donors and 4 normal dogs were mounted in muscle baths, and trains of electrical field stimulation (EFS) applied for 20 minutes at 90-second intervals. Subsets of strips were incubated with hydrogen peroxide (H2O2), angiotensin II (Ang II; Nox activator), apocynin (inhibitor of Noxs and ROS scavenger), or ZD7155 (specific inhibitor of angiotensin type 1 (AT1) receptor) for 20 minutes in continued EFS trains. Subsets treated with inhibitors were then treated with H2O2 or Ang II. In human and dog bladders, the ROS, H2O2 (100μM), caused contractions and enhanced EFS-induced contractions. Apocynin (100μM) attenuated EFS-induced strip contractions in both species; subsequent treatment with H2O2 restored strip activity. In human bladders, Ang II (1μM) did not enhance EFS-induced contractions yet caused direct strip contractions. In dog bladders, Ang II enhanced both EFS-induced and direct contractions. Ang II also partially restored EFS-induced contractions attenuated by prior apocynin treatment. In both species, treatment with ZD7155 (10μM) inhibited EFS-induced activity; subsequent treatment with Ang II did not restore strip activity. Collectively, these data provide evidence that ROS can modulate bladder function without exogenous stimuli. Since inflammation is associated with oxidative damage, the effects of Ang II on bladder smooth muscle function may have pathologic implications.

Funder

Foundation for the National Institutes of Health

National Institute of Neurological Disorders and Stroke

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3