Abstract
As a branch of the two-dimensional (2D) optimal blanking problem, rectangular strip packing is a typical non-deterministic polynomial (NP-hard) problem. The classical packing solution method relies on heuristic and metaheuristic algorithms. Usually, it needs to be designed with manual decisions to guide the solution, resulting in a small solution scale, weak generalization, and low solution efficiency. Inspired by deep learning and reinforcement learning, combined with the characteristics of rectangular piece packing, a novel algorithm based on deep reinforcement learning is proposed in this work to solve the rectangular strip packing problem. The pointer network with an encoder and decoder structure is taken as the basic network for the deep reinforcement learning algorithm. A model-free reinforcement learning algorithm is designed to train network parameters to optimize the packing sequence. This design can not only avoid designing heuristic rules separately for different problems but also use the deep networks with self-learning characteristics to solve different instances more widely. At the same time, a piece positioning algorithm based on the maximum rectangles bottom-left (Maxrects-BL) is designed to determine the placement position of pieces on the plate and calculate model rewards and packing parameters. Finally, instances are used to analyze the optimization effect of the algorithm. The experimental results show that the proposed algorithm can produce three better and five comparable results compared with some classical heuristic algorithms. In addition, the calculation time of the proposed algorithm is less than 1 second in all test instances, which shows a good generalization, solution efficiency, and practical application potential.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Publisher
Public Library of Science (PLoS)
Reference62 articles.
1. Transfer ants reinforcement learning algorithm and its application on rectangular packing problem;X.F. Xu;Computer Integrated Manufacturing Systems, J.,2020
2. "Optimal packing and covering in the plane are NP-complete".;Fowler;Information Processing Letters,1981
3. Approximation schemes for covering and packing problems in image processing and VLSI, J;D. S. Hochbaum;ACM,1985
4. Approximation algorithms for combinatorial problems;D. S. Johnson;Journal of Computer and System Sciences,1974
5. Approximation and online algorithms for multidimensional bin packing: A survey;H. I. Christensen;Computer Science Review,2017
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献