Metabolomic analysis of human plasma sample after exposed to high altitude and return to sea level

Author:

Gao JiayueORCID,Zhao Ming,Cheng Xiang,Yue Xiangpei,Hao Fangbin,Wang Hui,Duan Lian,Han Cong,Zhu LinglingORCID

Abstract

When ascending to high altitude, it is a rigorous challenge to people who living in the low altitude area to acclimatize to hypoxic environment. Hypoxia exposure can cause dramatic disturbances of metabolism. This longitudinal cohort study was conducted to delineate the plasma metabolomics profile following exposure to altitude environments and explore potential metabolic changes after return to low altitude area. 25 healthy volunteers living in the low altitude area (Nor; 40m) were transported to high altitude (HA; 3,650m) for a 7-day sojourn before transported back to the low altitude area (HAP; 40m). Plasma samples were collected on the day before ascending to HA, the third day on HA(day 3) and the fourteenth day after returning to low altitude(14 day) and analyzed using UHPLC-MS/MS tools and then the data were subjected to multivariate statistical analyses. There were 737 metabolites were obtained in plasma samples with 133 significantly changed metabolites. We screened 13 differential metabolites that were significantly changed under hypoxia exposure; enriched metabolic pathways under hypoxia exposure including tryptophan metabolism, purine metabolism, regulation of lipolysis in adipocytes; We verified and relatively quantified eight targeted candidate metabolites including adenosine, guanosine, inosine, xanthurenic acid, 5-oxo-ETE, raffinose, indole-3-acetic acid and biotin for the Nor and HA group. Most of the metabolites recovered when returning to the low altitude area, however, there were still 6 metabolites that were affected by hypoxia exposure. It is apparent that high-altitude exposure alters the metabolic characteristics and two weeks after returning to the low altitude area a small portion of metabolites was still affected by high-altitude exposure, which indicated that high-altitude exposure had a long-term impact on metabolism. This present longitudinal cohort study demonstrated that metabolomics can be a useful tool to monitor metabolic changes exposed to high altitude, providing new insight in the attendant health problem that occur in response to high altitude.

Funder

National Natural Science Foundation of China

Beijing Municipal Science and Technology Commission

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3