Characterization of two linear epitopes SARS CoV-2 spike protein formulated in tandem repeat

Author:

Tarigan SimsonORCID,Dharmayanti N. L. P. Indi,Sugiartanti Dianita,Putri Ryandini,Andriani ,Nuradji HarimurtiORCID,Robinson Marthino,Wiendayanthi Niniek,Djufri Fadjry

Abstract

The vital roles of diagnostic tools and vaccines are prominent in controlling COVID-19. Spike protein of the SARS CoV-2, specifically the epitopes in that protein, are the critical components of the vaccines and immunological diagnostic tools. Two epitopes in the spike protein, the S14P5 and S21P2, identified previously are of great interest because they are linear and elicit neutralizing antibodies. The present study formulated each epitope in the tandem-repeat structure to increase their immunogenicity and facilitate their production. The tandem repeats (TR) were expressed efficiently in E. coli, yielding 58 mg and 46 mg per liter culture for TR-S14P5 and TR-S212, respectively. ELISA using either one of the repeating epitopes can be used as a serological test to identify individuals infected by the SARS-CoV-2 virus. The area under curves (AUC), based on testing 157 serum samples from COVID-19 patients and 26 from COVID-19-free individuals, were 0.806 and 0.889 for TR-S14P5 and TR-S21P2-based ELISAs, respectively. For 100% diagnostic specificity, the sensitivity was only 70%. The low sensitivity supposedly resulted from some samples being from early infection prior to antibody conversion. Both recombinant epitopes were highly immunogenic in rabbits, and the immune sera recognized inactivated SARS CoV-2 virus in dot-blot assays. These antibodies should be useful as a reagent for detecting SARS-CoV-2 antigens. Furthermore, the TR-S14P5 and TR-S21P2, being conserved and denaturation-resistant, are envisaged to be ideal for intra-nasal vaccines, which are required to complement current COVID-19 to overcome rapidly mutated SARS CoV-2.

Funder

Badan Penelitian dan Pengembangan Pertanian

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3